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PREFACE

The basic theory underlying the use of systems of simultaneous equations
in economic research was developed about 1943. Much of the early literature
on this subject assumed a knowledge of higher mathematics and most of the
applications of the method were mede by research workers who had such knowl-
edge. More recently, descriptions of this general approach that presume only
& limited knowledge of mathematics have been published; and the method itself
is beginning to be used by research workers who have little or no knowledge
of calculus and matrix algebra.

Descriptions of the camputations involved in handling systems of simul-
taneous equations are given in several books. Most of these » however,
assume some knowledge of matrix manipulation, and all that have came to the
attention of the authors omit many steps and fail to provide adequate coverage
of the many special situations that are likely to arise.

This handbook is designed to provide a complete description of the steps
involved in the more common types of problems and to illustrate them in a vay
that will be clear to research and clerical workers who have an acquaintance
only with standard methods for handling single equation multiple regression
analyses. Some knowledge of determinants and matrices is required for a
number of problems, but these aspects are discussed in considerable detail
before they are applied.

As some statistical computing units may prefer to use a comparable
approach for all problems of this sort, whether they involve a single or a
simultaneous set of equations, a method of handling ordinary least squares
multiple regression analyses is given which utilizes the same initial steps
as those for systems of simultaneous equations. This method is believed to
be more efficient than those now commonly in use; it is easier for beginners
to understand than those based essentially on the Doolittle approach, as no
back solution is required. The description of this method should be clear to
any clerical worker who is acquainted with the obtaining of sums of squares

and cross products.

The general approach used in this handbook for systems of equations is
given in Chapter 4 of A Textbook of Econcmetrics by Lawrence R. Klein, and
in Chapter 10 by Chernoff and Divinsky of Studies in Econometric Method,
Cowles Commission for Research in Economics Monograsph 14. Minor modifications
have been made in methods that these authors suggest. These modifications and
sources for other material are indicated by footnote. Suggestions offergd by
Frederick V. Waugh and Glenn L. Burrows, both of the Agricultural Marketn.lg
Service, and by Clifford Hildreth of Michigan State University, were particu-

larly helpful.

The resesrch on which this report is based was made under authority of
the Agricultural Marketing Act of 1946 (RMA, Title II).
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COMPUTATIONAL METHODS FOR HANDLING SYSTEMS
OF SIMULTANEOUS EQUATIONS
With Applications to Agriculture

by
Joan Friedman, Mathematical Statistician, and Richard J. Foote, Head,

Price and Trade Research Section,
Agricultural Marketing Service

One of the purposes of this handbook is to provide a standard method of
approach for handling any problem that involves the estimation of structural
coefficients for economic relationships whether they are derived from a single
equation or a system of simultaneous equations. In connection with the single
equation approach, an example involving 5 variables is shown. The computa-
tions required for other numbers of variables are obvious.

When working with systems of simulteneous equations, modifications are
required depending on (1) whether particular equations are just identified
or overidentified and (2) the number of endogenous and predetermined variables
in each. Methods for determining the degree of identification are given on
page 28; table 11 on page 51 shows the exact steps to be used for any given
situation. Examples are worked out in detail at each point that it appeared
confusion might arise. In the past, many analysts have used the method of
reduced forms to handle systems of equations for which each equation is just
identified. We suggest, instead, use of a method that represents a slight
modification of that used for equations that are overidentified. The struc-
tural coefficients obtained by either method are identical.

In addition to obtaining estimates of the various coefficients as such,
most analysts want some indication of the probable sampling errors in these
coefficients and in forecasts made from the analysis. If the independent
variables used and the unexplained residuals from the analysis meet certain
rather rigid specifications, such measures are available for single equation
analyses regardless of the number of observations used in the study, and
methods for obtaining them are given here. Exact estimates for such measures
when working with systems of simultaneous equations, or for single equation
analyses when based on the kind of data usually used in economic research,
have been developed only for the case of an infinitely large sample.

Alternative methods for just identified equations which presumably wc?uld
give identical answers with respect to the standard errors of the coefficients
if applied to an infinitely large sample yield quite different answers.when
applied to analyses based on semples of the size commonly encountered in
studies relating to economic data. We have outlined one of these methods for
obtaining standard errors of the coefficients for equations that are just
identified. Based on a study of a limited number of empirical examples,
estimates obtained by this method range from 0.25 to O.? 'Fimes as large as
those given by an equally good method as applied to infinitely large samples.
Conventional t-tests cannot be carried out with such estimates but, in a )
rather general way, they should give some indication of the probable magni-

tude of sampling fluctuations in the coefficients.
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In contrast to these results, Wagner (g_]_.) }_/ used a Monte Carlo approach
to study the sempling varisbility of coefficients that relate to equations that
are overidentified, based on 100 samples of 20 observations each. These
results suggest that the t-distribution may apply to such estimates and their
computed standard errors. Further research will be required to ascertain
whether this holds in general or only for the particular model that he studied.

In view of these problems with respect to standard errors of structural
coefficients, we do not give a formula for the standard error of forecast from
a system of simultaneous equations.

As meny computations are required for complex systems of equations, it
frequently is convenient to adjust the sums of squares and cross products in
such a way as to meke the sums of squares nearly equal to 1. This is desirable
for any problem, although less important for simple than for complex ones.
Methods of making this adjustment are discussed on page 6. All examples are
based on the assumption that such an adjustment is used.

In general, the carrying of 9 decimals, particularly for problems involv-
ing many variables, is recommended to avoid the necessity of using a "floating"
decimal point. In all cases, sufficient decimals should be carried for a mini-
mum of 4 significent figures to appear in any computation. Some calculating
machines do not provide full carryover for this number of decimals unless they
are equipped with a special attachment. Errors caused by not having full
carryover are important chiefly in connection with some types of negative
multiplication. Clerical workers who plan to use 9 decimals in their compu-
tations should ascertain whether their machines are equipped to provide full
carryover and, if not, should consult their manufacturer's representative. To
save space in the tables included in this handbook, fewer decimals are shown
than were actually used in the computations. Because of this, some computa-
tions appear to be slightly in error.

This handbook is designed to show how to make the necessary computations
when working with alternative types of analyses. Material relating to inter-
pretation has in general been omitted. The reader is referred to standard
texts on statistics and econometrics. Specific references are given on certain
topics.

A 5-VARIABLE MULTIPLE REGRESSION PROBLEM

This exemple is taken from a study by Lowenstein and Simon (15); it deals
with factors that affect the domestic mill consumption of cotton. Logarithms
of the following variables for the years 1921-4O and 1948-52 were used in the
computations shown here:

1/ Underlined numbers in parentheses refer to Literature Cited, p. 87.
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X, - Domestic mill consumption of cotton per capita, pounds
Xo - Deflated dispossble income per capita divided by 10, dollars

X3 - Change in deflated disposable income per capita from the pre-
ceding year, dollars

X), - Mill consumption of synthetic fibers per 100 persons, pounds

X5 - Deflated price per pound of Middling 7/8 inch cotton at the
10 spot markets, year beginning the preceding July, cents.

Since the regression equation was based on logarithms of the variables, coding
of X, and X), affected only the constant term. The decoded value is given in
their article whereas all of the coefficients shown in this section of the
handbook apply to the coded variables expressed in logarithms.

Obtaining the Augmented Sums of Squares and Cross Products

The first step in the solution of any problem of this sort is to com-
pute the "augmented" sums of squeres and cross products or mcments. Use of
augmented moments is suggested to avoid rounding errors involved in obtain-
ing arithmetic means. As used in this connection, an augmented moment
equals the actual moment multiplied by the number of observations in the
sample, here designated as N. In working with augmented moments , the sums
of squares and cross products in terms of original values are cumulated
directly on the calculating machine as for any problem of this type. The
total for the observations included in the analysis is then multiplied by N,
or the number of such observations. The correction factor for an augmented
sum of squares equals the square of the sum of the series. The correction
factor for an augmented cross product equals the product of the sum for each
series. Subtraction of the correction factor from the augmented sum gives
the augmented sum in terms of deviations fram the respective means. These
computations for the 5-variable regression problem are illustrated in table 1.
It should be noted that Xy, the dependent varieble, is written first.

A check column should always be carried in these and other computations.
This is obtained by computing a "new" variable, Z, for each year or observa-
tion in the analysis; this variable equals the sum of &ll of the varisbles
for that observation. To check the computations involved in obtaining I,
the sum for each of the variables, including the varisble %, over all of the
Yyears included in the analysis is obtained. These sums constitute the first
row of table 1. The sum of these sums for the variables other than Z should
exactly equal the sum of g. If they do, the computetions involved in obtain-
ing Z are correct. The second row in table 1--the means--is obtained by
dividing the sums in the first row by N, the sample size, which, for this
example, equals 25. Cross-products for Z with the other variables in the
analysis are obtained in the usuel way and are shown in the last colum}.

The check for each row is carried out by computing the sum of &ll the items
in the row, except for the item in the last, or Z column. For example,
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in the second row, the check is obtained by adding the means for X1, Xp, Xa,
X}, and X5. This should equel, except for rounding errors » the item in thé
¥ column, and if true, this is indicated by a ./ placed next to that item. 2/

The terms in the lower left-hand part of the table are omitted. But in
order to check the computations in all sections after the first, these
omitted terms must be included. For example, the computation of the check
for the first row of the third section of table 1 is given by:

0.2060 + 0.2690 + 0.0276 + 0.3222 + 0.2035 = 1.0284

The terms omitted from this row in the table, 0.2060 and 0.2690, are obtained,
respectively, fram the first row of the first section and the first row of
the second section of column (3), the column in which the first written term
of the row, 0.0276, appears. In general, for the ith row of any section, the
omitted terms to the left of any given term, call it m, are obtained from

the ith row of each section of the column in which m appears.

If a discrepancy due to a rounding error should occur, the sum across
the row is considered as the correct figure and the figure originally shown
in the Z column 1s corrected accordingly. This corrected value is used in
further computations. The following tabulation, showing the original com-
putations with nine decimals for the items in the lower right cornmer of
teble 1, illustrates this point:

Z column for section 5 of table 1

With 4 decimals : With 9 decimals
210.3922 210.39220317 16
5,259.8050 / : 5,259.805079400
5,247.6909 5,247.690950246 /

1211 J/ 12.11k129154 ./

~ the calculation with nine decimals, £ in the first row eqt'xals
210.392203177. The result obtained by adding a.crogs the row is
210.392203176. Therefore the ninth decimsl place is changed from a 7 to
a 6. The corrected value, 210.392203176, is multiplied by N to give
5,259.805079400 in the second row. The above example illustrates a .
further point; since only a limited number of decimals are shown in this
handbook, & J was placed after all items in the Zcolumn that serve a]sn
checks. However, rounding errors do occur in some of the§e items. T.ese
result in part beceuse the omitted figures were dropped without rounding.

in the final
2/ Rounding errors are usually taken to mean a discrepg.nc':y in th
deEiTma.l placg. In some computations, the number of significant figures in

the items operated upon is a further consideration.
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If an error is mede in computing the sums of squares and cross products,
the following method is more efficient than a direct recomputation as a means
of locating the error. Suppose that the checking operation indicates that an
error has been made in obtaining the extensions with Xj. Continue to calcu-
late the extensions with X, and, if the check for this indicates that no error
has been mede, we know that the augmented moment between X, and in the
first section is correct. Similarly, if the extensions with X3 check, we know
that the augmented moment between X; and X3 in the first section is correct.
If all other extensions check, the mistake is in the computation of the sum of
the squares for X,. If one of the extensions does not check, recomputation of
the corresponding element in the first section is indicated. A similar proced-
ure is used if the initial error occurs in an extension other then with X;.

Ad justments to Make the Sums of Squares Nearly Equal 1

- It is a great convenience in camputations to have all the elements on the
main diagonal close to 1. In making this adjustment we are concerned only with
the last row in each section of table 1. A set of values that are powers of
10, the kj, where i is the variable to which it epplies, is chosen such that
when the sum of squares for the varisble is multipljed by the square of the kj
the answer lies between 0.1 and 10. The value (ki) is referred to as the ad-
Justment factor. The k; are shown in the second column of table 2. They are
determined in the following manner: In table 1, note that the sums of squares
for Xy, X,, and X3, respgctively, lie between 0.1 and 10; therefore the adjust-
ment Factor equald (1.0)° or 1.0 and k equals 1.0 for X,, X5, and X3. For X),
hovever, the sum of the squares equals 161.1827 and it must be mult?plied. by
an adjustment factor of (0.1)< or 0.0l to bring it between 0.1 and 10; there-
fore k;, equals 0.1. If the sum of squares for Eu, for example, had been
1611.827, the adjustment factor would be (0.01)° or 0.0001 and k) would equal
0.01. The adjustment factors for the cross products, the kikj, are obtained
by multiplying the k's for the variables involved. For exemple, k klp , the
ad justment factor for IxXsx),, equals (1.0) (0.1) = 0.1. The k;k; a¥e shown in
the right-hand section of table 2.

Table 2.- Adjustment factors

kyks for -
Variable . Value of ki - - " -
Xy : 1.0 1.00 1.00 1.00 0.10 0.10
X5 : 1.0 1.00 1.00 .10 .10
X3 H loo 1.00 .lO olo
X)'I' M ol .Ol ool

X5 : -1 .01
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Adjusted augmented moments are obtained by mltiplying the augmented
moment, the terms in the last row of each section of table 1, by if.:e appro-
priate adjustment factor from table 2.

The adjustment process is important, naturally, only when the ki
differ considerably from one. Particularly when working with logarithms or
first differences of logarithms, all of the ki ’noma.lly are close to one.
Some computing units may prefer to adopt a generel rule that adjustments are
made only when at least one of the k; lies outside the range 0.1 to 10. Had
this rule been followed, adjustments would not have been made for this anelysis.

The steps involved in obtaining the adjusted augmented moments are exact-
1y the same for single and multiple equation anselyses.

Obtaining Multiple and Partial Regression and Correlation Measures

The method of determining multiple regression constants discussed in the
following pages differs in these two important ways from that given in some
of the standard statistical textbooks: (1) The use of D, the inverse of the
camplete moment matrix, _3] and (2) the computation of the inverse using a
variation of the Doolittle method that omits the conventional back solution. y

Steps involved in the forward solution of the Doolittle method are given
here in full detail as an aid to readers who are unacquainted with this method.
Experience with our central computing unit demonstrated this as the easiest
way to learn how to carry out these operations. Once the general approach is
learned, many of the computations shown individuaelly in table 3 can be cumulated
directly in the calculating machine. Use is made of all possible shortcuts of
this kind in the so-called abbreviated Doolittle method. This is the method
described by Klein (13, pp. 151-155). An example based on it is shown in the
appendix of this handbook. The so-called Crout method makes use of similar
shortcuts and is an equally efficient method for solving systems of simul-
taneous equations or inverting metrices. This method is described in detail

in the appendix, p. 95.

Computations involved in the forward solution of the Doolittle method are
shown in table 3 and are as follows:

In rows (1) - (5), columns (1) - (5), enter the adjusted augmented moments
computed sbove. The reader will note that the X's are listed in numerical
order; in the method used by Ezekiel, X; is placed after the last independent

3/ This epproach, suggested to the authors by Frederick V. Waugh, Direct".or,
Agricultural Economics Division, Agricultural Marketing Service, substa.nt:@.lly
reduces the number of calculations necessary for the estimation of the various
multiple regression coefficients, particularly the partial correlation coeffi-
cients. The method explained by Ezekiel (8), for example, is based upon the
computation of the inverse of a matrix using only the moments for the independ -
ent variables. Ezekiel refers to the inverse of this as the C matrix, the

elements of which are the cj 3
E/ This approach was suggested to the authors by Daniel B. Suits of the
Department of Economics, University of Michigan.
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variable. Computations involved in obtaining table 2 and the adjusted aug-
mented moments should be carefully checked as no automatic checks are availa-
ble for these steps.

Additional columns, Ii, one for each varisble in the analysis, are added
in colums (7) - (11). The makeup of these is obvious from the table.

As an glternative, data shown in the upper section of table 3 can be
recorded directly as the first row of each subsequent section.

In this forward solution we carry two check columns: Z,, column (6),
for that part of the solution concerning the x's; and Z;, colum (12), for
that part of the solution concerning the I's. For the upper section of table
3, that is, rows (1) - (5), these columns are obtained in the following way:
The element in the ith row of the Z; column is obtained by adding together
the elements in the ith row of columns (1) - (5), including the omitted ele-
ments. The element omitted in the ith row and jth column can be found in the
jth row of the ith column: For example, the omitted element in row (4), col-
um (3), is the element in row (3), column (4), namely, 0.0940. The element
in row (4) of the I, column is given by: 0.6430 + 2.1640 + 0.0940 + 1.6118 +
(-0.0407)= 4.4722. The element in the ith row of the Zy column is obtained by
adding the elements in the ith row of columns (7) - (12§. Because of the
makeup of the columns, however, each element in these rows of the Zy column
equals 1. In the computations outlined below, Z, and EI are treated as addi-
tional variables, with all the operations performed upon them.

Only the second row in the first section and the last two rows in each
succeeding section of the solution are checked. This is done in two parts,
one for the x's and one for the I's. In order to check the camputations in
either of these rows in the x part of the forward solution, sum all the ele-
ments in that row for the x columns and compare that sum with the element in
the Z, column for that row. There is no question of omitted elements here.
These figures should be identical, except for rounding errors. If they are
identical, this is indicated by a .. Where a discrepancy occurs due to a
rounding error, the sum across the row replaces the element in the Z column
and is used in further computations. (See p. 5.) The check on the computa-
tions in the I section is obtained in like menner; that is, sum the elements
in the ith row, columns (7) to (11), end compare that sum with the element in
the ith row of the Iy column.

We now consider computations involved in each row of the lower sections
of the forward solution in table 3.

Row (1).--Copy row (1) from the upper section of table 3.
Row (1").--Divide row (1) by its first term, that is by 2.1088, and per-
form the check. For computational purposes, it is more efficient to compute

1/2.1088 = 0.4741, lock it in the calculating machine, and multiply each item
of row (1) by it.

Rov_(2).--Copy row (2) of the upper section of table 3.
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Row (1)(-1.0804).--Multiply row (1) by -1.0804. This factor is the ele-
ment of row (1"), column (2), with its sign changed. Note that no figures are

inserted in this section of the table in columns to the left of column (2).

Row 12' ) .--Add row (2) and the following line and perform the check.

Row (2").--Divide row (2') by its first term, that is, by 2.7474, and
perform the check. Or, multiply row (2') by 1/2.7474 = 0.3639.

Row (3) .-Copy row (3).

Row (1)(-0.2750) .--Multiply row (1) by -0.2750. This factor is the ele-
ment of row (1"), column (3), with its sign changed.

Row (2')(0.0780) .--Multiply row (2') by 0.0780. This factor is the
element of row (2"), column (3), with its sign changed.

Row (3') .--Add row (3) and the two rows following it and perform the check.

Row (3").--Divide row (3') by its first term, that is, by 0.4973, and per-
form The check. Or multiply row (3') by 1/0.4973 = 2.0106.

Row (U4) .--Copy row (4).

Row (1)(-0.3049) .--Multiply row (1) by -0.3049. This factor is the ele-
ment of row (1"), column (4), with its sign changed.

Row (2')(-0.5347) .--Multiply row (2') by -0.5347. This factor is the ele-
ment of row (2"), column (4), with its sign changed.

Row (3')(-0.0641).--Multiply row (3') by -0.0641. This factor is the ele-
ment of row (3"), column (4), with its sign changed.

Row (4').--Add row (4) and the three rows following it and perform the check.

Row (4").--Divide row (4') by its first term, that is, by 0.6279 and perform
the check. Or, multiply row (4') by 1/0.6279 = 1.592L.

Row (5) .--Copy row (5).

51°rw (1)(-0.0672) . --Multiply row (1) by -0.0672. This is the element of
row (1™), column (5), with its sign changed.

Row (2')(-0.0559) .--Multiply row (2') by -0.0559. This is the element of
row (2"), column (5), with its sign changed.

Row ')(-0.1599) . --Multiply row (3') by -0.1599. This is the element of
row (3™, colum (5), with its sign changed.

. Bow (&) (0.272?) .-Multiply row (4') by 0.2729. This is the element of row
(4"), column (5), with its sign changed.
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N kRow 55'!.-eAdd row (5) and the four rows following it and perform the
check.

Row (5").--Divide row (5') by its first term, that is, by 0.0286, and
perform the check. Or, multiply row (5') by 1/0.0286 = 34.87h9.

This completes the forward solution.

Unfortunately, the checks do not guarantee that the correct multipli-
cand has been used; they only prove that the multiplications were carried out
correctly. As a final check, it is suggested that the multiplicands shown in
the stub be examined to make sure that the correct value was used and that
these then be used to recheck the computations in the Z1 column (column 12 in
table 3). Experience in our central computing unit has indicated that
occasionally a statistical clerk is interrupted between the computations
involved in the x and the I part of the table and that the wrong multiplicand
is ‘'used in the latter set of computations. It seems unlikely, however, that a
wrong multiplicand would be used in the x part of the table and the correct
one in the I part. When the abbreviated Doolittle solution is used (see
appendix), this final check is not needed, as the computations are carried out
on a column-by-column basis rather than a row-by-row basis.

D Matrix.--The D matrix is shown in table 3 immediately following the I
part of the forward solution. Its camputation involves the terms in the last
2 rows of each section in the I part of the forward solution. The element in
the ith row and jth column of the D matrix, dij’ is obtained by the following
formula:

d'i.j = (l,Ii)(l", Ij) + (21, Ii)(2", Ij) + (3, Ii)(3"’ Ij) + (W, Ii)
(W, 1p) + (5% I, Iy

vhere the first term within the parentheses refers to the row and the second,
to the column designation of the elements in the forward solution. Therefore:

dyq = (1) (0.b7841) + (-1.0804)(-0.3932) + (-0.3593) (-0.7225)
+ (0.2958) (0.4711) + (0.131L)(4.5847) = 1.9008
end d)p = (1)(0) + (-1.0804)(0.3639) + (-0.3593)(0.1569)
+ (0.2958)(-0.8595) + (0.1314)(-7.5270)

These sums should be cumulated directly in the calculating machine. A
check colum, £, is also carried in this computation. The elements in the Z
column, 44=, are computed in the same way as any other element in the D
matrix. In the general formula given above, Ij4 becomes 3. That the sum
across the ith row of D is identical (except for possible rounding errors
growing out of the carrying of only 4 decimals) with the element in the ith
row of the ¥ column is indicated by & check mark. This checks the computation
of the ith row. It will be noted that the elements in the lower part of the
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D matrix have been omitted. These need not be computed, since di: = dji' In
computing the check on the computations in rows after the first, however,
these omitted elements must be included. For example, the check on the compu-
tation of the fourth row of the D matrix is given by:

1.7227 + (-2.9143) + (-1.7920) + 4.1914 + 9.5205 = 10.7282

The next to the last (fifth) column of the D matrix need not be computed,
since it corresponds to the last row (5") in the I part of the forward solution.

Al11 the usual measures of partial regression and correlation can be obtained
easily from the D matrix. These calculations are shown in rows (6) - (12) of
columns (1) - (5); column (6) is a check column.

Partial Regression Coefficients.--The calculation of the highest order
partial regression coefficients, the "b's", is shown in row (6). This is done
as follows:

Row (6): Divide each element of the first row of the D matrix, including
the element in the £ column, by the first element in the first row of D, and
change the sign of the resulting quotient. Symbolically, bjj. = 'dlj/dll’
vwhere j refers to the subscript of the x's and the column of the D matrix.
blg,ghs, the coefficient of x,, therefore equals - dy5/dy; or - (-1.6934)/1.9008
= 0.0909. bl3.2)-l»5’ by} ,235, and bys5 o3Y, the coefficients on x3, x), and xs,
respectively, are obtained in like manner. That the sum across row (6) is
identical (except for possible rounding error due to carrying only L4 decimals)
with the element in the I column is indicated by a check mark. This checks the
computation of the b's. Since x; is the dependent variable, no coefficient is
attached to it. The -1 in row (%), column (1), and the figures in the follow-
ing rows are written in order to check the computations.

Standard Errors of the Regression Coefficients.--The calculation of the
standard errors of the highest order partial regression coefficients is shown
in rows (7) - (11). This is done as follows:

Row (7): Campute dlldj" that is, the product of the element in the first
row and first column of D with the successive diagonal elements of D. For
example, the element in the first or x; column is obtained by squaring dp;;
the element in the second or xp column equals djjdpp = (1.9008)(2.46L4T) =
4.6850; and the element in the I column is obtained by multiplying dj; by
dej. dej is the sum of the diagonel elements of D and is shown in the last
column of“fow (12). That the sum across row (7) is identical (except for
possible rounding error) with the element in the £ column is indicated by a

check mark.

Row (8): Campute dfj, that is, the square of each of the elements in the
first row of the D matrix, excluding the element in the Z column. The element
in the Z column of row (8) is the sum across the row. The check on this row is
one of recomputation.
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.Row (9): Subtract each element of row (8) from the element in the corres-
ponding column of row (7), including those in the Z column. That the sum
across row (9) is identical (except for possible rounding error) with the ele-

ment in(t?e Z column is indicated by a check mark. This checks the computation
of row (9).

2
Row (10): Compute 1/N'dll, vhere N' equals the sample size minus the total
number of variables, and df, is,the square of the element in the first row and
first column of D. The value df) is given in the_ first column of rows (7) and
(8). oIn this example, N' equals 25-5 or 20 and d7; equals 3.6130; therefore
1/N'd7y) = 1/72.2616 = 0.0138. Multiply each element in row (9) by 0.0138, in-
cluding thet in the I column. That the sum across row (10) is identical (ex-

cept for possible rounding error) with the item in the £ column is indicated
by a check mark.

Row (11): Compute the square root of the element in the corresponding
column of row (10), except the element in the I column. The elements in row
(11) are the standard errors of the coefficients in the corresponding column
of row (6). The check is one of recomputation.

Coefficients of Partial Determination.--The calculation of the highest
order coefficients of partial determination (the square of the partial corre-
lation coefficient) is shown in row (12). This is done as follows:

Row (12): Divide each element in row (8) by the element in the corres-
ponding column of row (7), except the Z column. The elements in row (12)
are the coefficients of partiel determination. The element in row (12),
column (2), for example, equals r12.3u5. The check on this row is one of
recamputation.

If the coefficients of partisl correlation are desired, they can be
obtained by taking the square root of the elements in row (12).

2
Coefficient of Multiple Determination.--R; 2345, the coefficient of mul-
tiple determination, is obtained by the following formule:
R2 Cdymy -1
1.2345 7 Tdp) my

where d,; is the element in the first row and first column of the D matrix,
and myy is the adjusted augmented moment of x; on Xy, which is found in the
first row and first column of the upper part of table g. In this exemple,
dil equals 1.9008 and my, equals 2.1088. Therefore, Ry 23i5 =

9008)(2.1088) - 1 _ 5 7505. The coefficient of multiple correlation,
1.9008) (2.10

R o3ls5, if desired, can be obtained by taking the square root of the coeffi-
cient of multiple determination.

Standard Error of Estimate.-- s; o3u5, the standard error of estimate,
is obtained by the following formula:

1
8] .2345 = U '511



- 1h -

where d.. is the element in the first row and first column of the D matrix, N

is the %%mple size, and N' is N minus the total number of variables. In this

egample , d77 equals 1.9008, N equals 25, and N' equals 20. Therefore,

87,2345 = 1 = 0.0010. 81 .2345° the standard error of estimate,
25(20) (1.9009)

equels the square root of this value or 0.0324. The N in this formula is
required because of the use of augmented moments.

Regression Equation Based on Deadjusted Data.--Since the regression coef-
ficients and thelr standerd errors are computed on the basis of adjusted data,
they must be deadjusted in order to apply to the original data. This dead-
justment, cerried out in rows (14) - (18), is as follows:

Column (1): Enter the variables in numerical order.

Column (2): Enter the regression coefficients, the b's, obtained in row
(6). Note that no figure is' entered for X,.

Column (3): Enter the stendard errors of the regression coefficients,
obtained in row (11).

Column (4): Enter the appropriate velues of k; from table 2.
Column (5): Compute kj = ki/kJ.'

Column (6): The deadjusted b's are obtained by multiplying the b's, col-
umn (2), by their respective ki.

Column (7): The deadjusted standard errors of the b's are obtained by
multiplying the sy, column (3), by their respective k{.

Column (8): Enter the means of the variables from table 1.

Column (9): Computations in this column are used in obtaining the constant
for the equation. Multiply the deadjusted b's, column (6), by the mean in the
corresponding row of column (8) and add the figures in column (9), or. cumulate
the products directly in the machine. The constant in the equation, a, is
obtained by subtracting the cumulated product from the mean of Xl , the element
in row (14), column (8). Hence, a = 1.4065 - 1.2384 = 0.1680. "This result
can ’:lla.e recorded directly as the constant in the regression equation shown in
rovw 19.

The final regression equation, in the following form, is shown in row (19):

Xp = a + D1 3u5 Xp + Pr3 0u5¥X3 + b1y 235Ky + 15,2305

The figures in the table within the parentheses are the standard errors of the
respective regression coefficients.

The gtg.nc}ard error of estimate, 81,2345, also must be deadjusted. This is
done by dividing sy p3)5 by ky. The latter is given in row (14), column (4).



In our exgmple »k3 = 1; therefore, for this example, the standard error of
estm:?.te is the same on an adjusted or deadjusted basis. The indicated com-
putation is shown at the end of row (1k4).

The coefficient of multiple determination need not be deadjusted.

The check in this section is one of recomputation.

If all of the k| equal one, columns (6) and (7) can be omitted. In this
case, column (2) is used in place of column (6) in obtaining the constant in
the equation in column (9).

Eliminating or Adding Variables

If one or more variables are to be eliminated or added, the measures of
correlation and regression can be obtained without rerunning the asmalysis.

Eliminating Variables.--Application of the formula given below, which
applies if one variable is to be eliminated, yields elements of & similar D
metrix, D)k(, for all variables except the omitted ome, xk. 5/ The elements
of this matrix, the 41j)k(, can be obtained by the formula:

di sk - dixdgx
dyex
where the d's are the elements of D. These dij)x( values are used in place of

the corresponding dij values in the computations beginning with row (6) of
table 3. These computations are explained on p. 12.

digx( =

For exemple, if ) were to be dropped from the previous analysis, we
would compute the first row of D)L,(, that is, dll)h(: dle)h(: d13))+(, and

di5)4( by the formula:
d - 4,4
18 - Y%
dy),
If we consider the adjusted sugmented moments of Xy with the other varisbles
given in the first row of teble 3 as mjj, & check on the computation of the

first row of D:P"{ is given by computing mj1d11)h( + mi2d12)4( + m3 393 3) &4(
+ m15d15)1+(' his sum should equal 1.

It is not necessary to compute the entire D) h](_ matrix. In addition to
the first row, we need only campute the diagonal’elements, that is, dj L0
given by the formula:

dig)k( =

2
djsdyy - djn
g = A

5/ This formula was suggested by Frederick V. Weugh, Director, Division of
Agricultural Economics, Agricultural Marketing Service.
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The partial regression coefficients cen be obtained by:

Pryu( = - ——*1)-4—;11):(

Their standard errors a:e given by:

2
YRV dll)h(daa)h(e‘ 815)8(
N a1y
The coefficients of partial determination equal:
2 2
STRTE "?)u(
11)4(C33) 1 (
The coefficient of multiple determination equals:
= Gy ™y -?

l 2
35 d11)4( 11
The standard error of estimate is given by:

s - 1
1.235 =/ W E a7)5(

Similarly, if both x,. end x, were to be eliminated, we would compute the
elements of Dyyy(, the dij)kr(’ as follows:

Ggyer( = 1k Grr)i( - Sar)e( dir)x(

r)k(

Thus, if more than one variable is to be eliminated, the computations must
be done in steps by eliminating them one at a time.

Use of the above formula is easy if only one variable is to be eliminated;
1t becomes more difficult as additional variables are dropped. Sametimes the
analyst knows fairly well in advance which variables may need to be eliminated.
If so, he should use them as the highest-numbered independent variables. If
X), end X? were to be eliminated, this could be done by dropping columns (4),
(5), (10) and (11) and rows (4) and (5) and their corresponding sections in
the forward solution. The D matrix then could be easily recomputed and the
remaining computations carried out as in any 3-variable analysis. New check
:dmv; fg; use in the camputations beginning with row (6) probably would be

saeble.
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Adding Variables.--In general, it is easier to drop variables than to add
them. Hence, as many variables as are Iikely to be used should be incorporated
in the initial analysis; same of these can then be dropped if this appears
advisable. At times, however, a variable will need to be added. Assume that the
added variable is Xg. Use can be made of all of the computations already made
in the forward solution. Columns are added between the former columns (5) and
(6) and vetween columns (11) and (12), and a row (6) and a corresponding section
are added in the forward solution. Figures in these columns can be filled in by
performing the same sort of camputations as were done previously. An additional
product from the new section 6 will need to be added to each of the elements
in the original D matrix, and a new column (6) and row (6) should be added.
These steps can be checked by recamputation or by use of a new check sum. All

of the coefficients should be recalculated, making use of the new D matrix and
of new check sums.

Standard Errors of the Function and of Forecasts

The standard error of a point on the regression equation, or function, re-
lates to a point on the regression surface corresponding to specified values of
the independent variables. Its value differs fram point to point, depending on
the specific values assigned to these variables. This coefficient is used in
two ways: (1) It is a convenient step in computing the standard error of a spe-
cific forecast, and (2) when the values assigned to the independent variables are
all zero, it equals the standard error of the constant in the regression equation.

For a 5-variable multiple regression problem, the square of the standard
error of a point on the regression equation, or function, is given by:
2 2 — — -
*F1.2345 = S1.2345 [ﬁ}- + Negp(Xa - X2)2 + Negz(X3 - X3)2 + Neyy, (%), %)
-2 - - - -—
+ Neg5(X5 - X5)™ + Meps(Xp - Xp) (X3 - X3) + 2eoy(Xp - Xp) (Xy - Xy)
+ AWeps5(Xa - X2) (X5 - Xs5) + 2Nesy(x3 - X3) (XY - Xiy)
+ 2NC35(X3 - )-(-3) (X5 - fs) + Z{ChS(Xh - i)_;) (Xs - fs)]
where 8% pals 15 the deadjusted value of the square of the standard error of
estimate obtained by squaring the deadjusted standard error of estimate, N is

the mumber of observations on which the analysis is based, 6/ and the cjj are
obtained from the elements of the D matrix shown in table 3 by the formula:

-d d
cij = d;u.dildll]i;d

6/ N is required in the terms after the first within the brackets because of
the use of augmented moments in the camputations.
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If these values of cij are substituted in the formulae for the square of the
standard error of the function, N and djj appear in each of the products within
the brackets. We cen, therefore, rewrite the formula as:

2 2 N [ 1" > 2 " - e
s =5 + el ( -X,)"+ ¢ (X X

2+ ey (xy, - %)

n T 32 1" z - " - -7
+ c55(xs - X“S) + 2::23(}(.2 - x‘a)()c3 x.3) + 2°2b(x 0 Ya)(x'u xh)
+ 2cgs(x2 - ):2)(>cS - XS) + 2:.-3'1}(x3 - x3)(xh - Xh)
+ 2<:§5(x3 - x3)(x5 - xs) + 2°l+5(xh - xh)(x5 - XS)]}
where c{j = 411414 - dj3d1j. The computed cij are shown in table L,

Table L4.- c;',{ j for the 5 variable multiple regression problem

Outline : Values

5o §:§3 o) c3s §1.8171 0.2808 -2.6222 -6.5433
c'3'3 °§u °§5 3.4680 - .7076 -L4.5845

°i;h c;;S 4.9992 10.1983

¢55 45.2709

¢35, c32, cfi), and cis were computed in row (9) of table columns (2

(E? s aga (:5 s respec’%gvely. The other cf; must be canputza directlyf )5'05'3),
example, cB3 = d11d23 - d12d13. Substituting the values fram the D matrix, we
obtain: cfj= (1.9008)(1.5481) - (-1.6934)(-1.5665) = 0.2898. The computation
of the cij can be checked by computing the following sums of products:

() czp mpp + eg3 ma3 + ey, my, + c35 mog
(b) i3 mp3 + e33 mgy + cfy my + o3 Bas
(c) c;h moy + c3y my, + cly, my), + cﬂs myg
| () c35 mpg + e35 mag + cjjg myg + cf meg
vhere m; j is the adjusted augmented moment of x; on xj shown in rows (1) - (5),

colums (1) - (5), of table 3. Each of these sums of products should equal djj,

except for possible rounding errors. For example, to check the first row of the



-19 -

ciy, we compute (a): (1.8171)(5.2090) + (0.2898)(0.4121) + (-2.6222)(2.1640)
+ '2-6.51433) (0.3071) = 1.9008. The second, third, and fourth rows are checked
by computing (b), (c), and (d), respectively. These cjj are in adjusted terms.

For use in the formula for the standard error of a function, the c'i' mst
be deadjusted. This is done by multiplying c;- by kikj, the appropriate adjust-
ment factor from table 2. For exemple, to deadjust "h , =2.6222, miltiply by
kpkl, or 0.10. Therefore, the deadjusted value of cj) = (-2.6222)(0.10) =
-0.2622. The nature of the formula is such, however, that d;j is never
dead justed.

The means that are used in the formula are obtained fram teble (3), rows
(15) - (18) of column (8). These are given on a deadjusted basis.

Inserting the deadjusted standard error of estimate, cg_ j,meens, and the
adjusted dj; in the formla for the square of the standard error of the function
gives:

2 1 25 [ 2 2
S = 0.0010 + 1.8171 - 1.9431)2 + 3.4689 (X3-0.0051
F1.2345 {a-s 1,9008 e ) 3 )
0.0499(%),-2.1895)2 + 0.4527(X5 - 1.2379)2

+

+

2(0.2898) (X - 1.9L431) (x3 -0.0051) + 2(-0.2622) (X5~ 1.9431)(X), - 2.1895)

+

2(-0.6543) (X2-l 9431 (X5 -1.2379) + 2(-0.0707) (X3-0 .0051) (Xh—2 .1895)

2(-0.458k) (X3-0.0051) (X5-1.2379) + 2(0.1019) (X)-2.1895) (x5-1.2379)]}

The standard error of the function is obtained by inserting the specified

values of X, X3, Xy and X5 for any glven observation and taking the square
root of the result.

+

The standard error of a specific forecast is obtained from the following

formla:
_ ] 2 2
®x'y 'fs F).23u5 * % 1.2385

2
= 0.0010
J STy 0345 *
vhere s2 is on & deadjusted basis.
1.2345

Use of an Alternative Variable as the Dependent One

All measures of regression and correlation given in preceding sections are
based on the use of X; as the dependent varisble. If, after the analysés isd
run, it seems desireble to have one of the other va.ri?bles » Xy, as the epenD—
ent one, the various statistical measures cen be obtained fram the original
metrix by use of the following:
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The partisl regression coefficients equal:
b = - _i:i'.'-j—
iJ. dsi
If, for example, is to be used as the dependent variable in the 5-variable
problem given abové, we would compute: b21.3h5’ b23.lh5’ b2’+.l35! and
b25.l31+’ where b21.3u5 = - "d'"é"—’ etc.

The standard errors of the regression coefficients are glven by:

a -a2
sbij = dn 33 iJ
® N' d2

ii

2
_ [ dopd1y - 45
For example, s"21.3&5 ' d22§

The coefficients of partial determination equal:

2
1’%3- = _._f_l_')._
41395
2 a2
For example, 5, = 2
dopdyy
The coefficient of multiple determination 1is given by:
RY =%~
dysmyg

For example, Rg~l3h5 = doomoo - 1

The standard error of estimate equals:

1

ESAVE gy

For example, 82,1345 = 1
v NN 'doo

It should be noted that when variables are eliminated, added, or inter-
changed, the regression coefficients, their standard errors, and the standard
error of estimate must be deadjusted before they can be applied to the original
data. All of the formulas shown apply to adjusted values.
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ELEMENTARY PRINCIPLES REGARDING MATRICES AND DETERMINANTS

In this section, we briefly discuss those elements of matri
: X algebra that
are required for an understanding of the camputational methods described later

in this hendbook. In some sections » discussion is fairly complete:

9nly a bare outline of essentials is given. The discussi’on ig pai%iiﬁlz:?;rs’
incomplete in connection with determinants and the inverse of a matrix. More
complete summaries of material that relates tomatrices and determinants are
glven in Klein (13, pp. 324-341), Tintmer (18, pp. 331-341), and elsewhere.

Definitions

ay of numbers arranged in rows and columns. Certain
raction, and multiplication that apply to matrices are

A matrix is an arr
rules of addition, subt
described below.

In general terms, the matrix A cen be written in the following way:

_a.ll 8.12 313. o o a.ln_
821 8pp 8p3e - - 8o

A = (a'i,j) = a3l 332 8.33o o o 3311

_a‘ml ®m> Bp3e ¢ - B

where the subscripts attached to the a's indicate the row and column, respec-<
tively. For example, the first subscript on agjo means that the element is in
the third row, and the second subscript means the element is in the second
column of the A matrix. Since A has m rows and n columns, we call A an (m x n)
matrix. When m=n, that is, when the number of rows is equal to the number of
columns, we have a square matrix. A squere matrix with n rows and n columns is
called a matrix of order n.

Consider the (3 x 4) matrix A:

A =

o\ F\N
H MPhw
(@28 i \V)
Dw -

Here 913=2’ 823=1, 5.33=O, etc.

Throughout this handbook, computations ere performed with augmented moment
matrices. An augmented moment matrix, Myy, is a matrix whose elements are the
adjusted sugmented sums of squares end cross products (or augmented moments) of
the varisbles indicated in the subscripts, in this case, the X's. _7/ If, for

77 Tn Future roeferemces to this type of matrix, the word "augmented" and the
bar over the M are omitted.
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example, we deal with 3 X's designated respectively Xy, X2 and Xg end the my
are the elements of Myy, then myj is the moment of x; on X3, myp is the moment
of ¥ on X5, mjo is the moment of x; on xg, Myy 1s the moment of x5 on X3, myo
is the moment o;‘ Xp on xp, mp3 is the moment of xp on xg, m3) is the moment of
Xg on X, m32 is the moment of xg on X, and m33 is the moment of Xg on Xg.

A row vector is a matrix that has one row and n columns.
Example: B = (1 -2 0) is a row vector with n=3 columns; here,
P11 = 1, b2 = -2, b13 = O.

A column vector is a matrix that has m rows and one column.

Exeample:
2
C=]3 is a column vector with m=4 rows; here, cj; = 2,
-g; 021 = 3, 031 = -1, O)_'_l =4,

A scalar is a matrix that has one row and one column; that is, it is a
matrix with one element, or an ordinary number.

Example: D = 5 is a scalar.

A symmetrical matrix is a square matrix in which all the corresponding
elements above the mein, or left to right, diagonal are equal to elements
below the diagonal; that is, 843 = 8ji-

Example: 3 -1 2
E=]-1 L 1 is a symmetrical matrix.
2 1 -2

It should be noted that the augmented sums of squares and cross products
used in multiple regression analysis form a symmetrical matrix.

The unit or identity matrix, I, is a square matrix in which all the ele-
ments along the main diagonel are 1, and all the nondiagonal elements are Zero.

Example: 1 0 0
I=]0 1 O | is a unit matrix of order 3.
0 0 1

The transpose of the matrix A, written A', is a matrix in which the rows
of A are the columns of A', and the columns of A are the rows of A'.

o 1 2 1

Example: A' = [2 -1 3] isthetra.nsposeofA:I- 2 0
-1
| 3
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It should be noted that the transpose of a s trical .
matrix itself. ymetrical matrix equals the

The transpose of a row vector is a column vector and vice versa. In this
handbook, the term vector used alone always refers to a row vector; & column
vector, therefore, is written as the transpose. This convention is cammonly
used by mathematicians.

Additlon and Subtraction of Matrices

Addition and subtraction of matrices can be performed only i1f the matrices
have the same number of rows and the same number of columns, respectively.

Addition of matrices is performed by adding their elements term by term.

Example: 1 o L 3 0o 2 1 2
A= |3 2 1 -6 B=|2 1 0 3
2 1 1 O 1 1 1 3

1 2 5 5

C=A+B= |5 3 -1 -3

3 2 2 3

Subtraction of matrices is performed by subtracting their elements term by
term.

Example: Using the matrices A and B given above,
1 -2 3 1

D=A-B-= 1 i -1 -9
1 0 o -3

Multiplication of Matrices

The simplest type of multiplication involves matrices end scalars. The
product of a scalar (which, as defined previously, is an ordinary number) and
s matrix is a matrix whose elements are those of the original matrix, each
multiplied by the scalar.

2 =L

Example: o [ 1l -2 ]
0 3
Multiplication of two matrices A and B can be performed only if _p_h_g.nwnber
of columns of A equals the number of rows of B. IfA is an (m x n) matrix and
B is an (o x p) matrix, the product E is an (m x p) matrix whose elements are
the sums of certain products of the elements of A and B. The products involved
can be most esasily defined by considering some examples.




Example: A - 817 &p
82 82
_
€1 €5 13
E =
| %21 %22 23

.ol -
b3 P Pi3

boo b3

where

€7 = B11byq + 8oDpys €15 = B9Pyp + Bpboyy €3 = 879Py3 + 8ol
€p) = Bo1byy + 8opboys € = Bpybio + Bopbop, €3 = 8o1Py3 + Bpobpg

1
0

2
-1

|

E=AXB=[

IR

-1
1

2
1

1 3

0

]

4
-1

3
0

|

The elements of E are obtained in the following way:

o7 = (1 x1) + (2x-1) = -1, ep
+(2x1)=’+
e2l=(0xl)+(-lx-l)=l, €

+(-lxl) = =1

In general, e;

n

(1x3)+(2x0) =3, e13=(1x2)

(0x3)+(-1x0) =0, = (0 x 2)

e23

, the ijth element of the matrix product E = AB equals the

sum of the products‘of the elements of the ith row of A with the corresponding
elements of the jth column of B, beginning at the left-hand side and top,

respectively.

As a further illustration of matrix multiplication, consider the following:

z
2.0613 -0.3084 1.2149 0.4268 1.3570 | 1.7838
A= .1301 2.4359 Sh1l | B = |-1.2243 .6109 -.6134
1.6210 - 5041 2.1008 6064 -.2184 .3880

.3825 1.7689 -.n62

The additional column to the right of the B matrix headed "I" is composed of
row sums from the B matrix and is used to check the computation of E = AB.
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1.9941 2.343L 4.337

E =AB = -2.5986 1.5465 -1.052§1J
2.5829 1.4329 L.01548
-2.2548 1.6906 5642,/

If 8y and bjj are the elements of A and B, res emen
’ pectively, then e the el
in the ith row end jth column of E, including the 2 coltn;n, is g}%n by: ¢

5 = ailblj + 3.12‘02‘1 + a13b3.i
For example,
83 = a3lb12 + a32b22 + a.33'b32
= (1.6210)(1.3570) + (-0.50k41)(0.6109)
+ (2.1008) (-0.218%)
= 1.4329
Similarly,

€15 = 8 P1 g+ 8oy + By3P3y
(2.0613) (1.7838) + (-0.3084)(-0.6134)
+ (1.2149) (0.3880)

L.3375

If the sum across the ith row of E is identical with the element in the
ith row of the Z column of E, this is indicated by a check mark. This checks
the computation of the ith row of E. Such was the case in the first and fourth
rows. If there is a rounding error, that is, a discrepancy in the final deci-
mal place, the sum across the row is used to "correct" the element in the 2
colum. (See p.5.) This was the case in the second and third rows.

It should be noted that these computations were carried out with 4 deci-
mals instead of the 9 decimals used for most of the computations given in this

Hendbook .

Unlike ordinary multiplication, the order in which matrix multiplication
is performed is important; that is, AB does not necessarily equal BA. In fact,
for the examples shown above, BA does not even exist. Only for square matrices
is reverse multiplication possible and here AB in general is not the same as BA.

Example: 2 -1
=1 2 = -
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- 10
A"B=[1g —%] BxA:[l 2]

A row vector times a column vector equals a scalar, but & column vector
times a row vector is a matrix.

Example: F=(1 2 -1) G=| 1
3
2

1 2 -1

FxG=5 GxF= (3 6 -3

2 L -2

Therefore, it is important to perform multiplication in the indicated order.
Determinants

A natrix, as defined above, is an array of numbers; it has no value.
Associated with e square matrix, however, is a numerical value called the
determinent, written det. A = |A] .

The value of a second order determinant is defined as follows:

TV
Al = = a.lla - a,
22 " %12%
81 8
The value of a third order determinant can be obtained as follows:
b3 Byp Dby
Bl =[b21 bo2 o3| = D11 (bagbss - bagbaw) - bay(biob33 - Py3b3o)
b3) b3y byg + 31 (bypbo3 - by 3boy)
Example:
5| -6 1 -8 [
Bl =2 -3 0|=(-6)[(-3x4) -(0x-5]-2[(11xk) - (-8x-5)
2 -5 L +2[(1x0) -(-8'1-3)][= 16 J

Methods for evaluating determinants of higher order are given in the
appendix, pp. 89, 101.

Inverse of a Matrix

The inverse of the square matrix A, designated as A-l, is that matrix which
when multiplied by A equals the unit matrix, that is,

-1
A A-=1I



Example: 1
|y -+ lo
A= [2 0 ] A= [-1

N noj=
—_—
;p'
)
>
0
o+
- O
——

The inverse was obtained by application of the formula given below.

It should be emphasized that an inverse exists only for a square matrix,
and 1s 1tself a square matrix. The concept of matrix inversion is analogous
to division of ordinary numbers.

For a scalar, that is, a single number, the inverse is simply the re-
ciprocal of that number.

For a second order matrix, the inverse can be obtained directly from the
following formula:

N [ B 8, ]
AT = (TTAT TTAT
-821 811
UTAT TAT
h A = &1 812
wnere ] 3'21 322 |
and |a] = ayy8p5 - 81895,

For a symmetrical matrix that has more than two rows and two columns, the
inverse can be obtained by a variation of the Doolittle method. This method of
matrix inversion has already been performed in the computation of the D matrix
for the miltiple regression problem. Throughout this handbook, most of the
matrices that we invert are symmetrical, so that the inverse also is symmetrical
To invert a symmetrical matrix by the variation of the Doolittle method, the
worksheet 1s set up in the following form:

Zm Z1
mn m12 ml3 oo m]k l O 0 00.0
m22 m23 ooomek 8 é g 0008
m33 oo mg{ ) oo .
mkk O 0 O ooo,l

The matrix on the left of order k is the one to be inverted; the one on the
right is a unit matrix of order k. (Compare this with the upper section of
teble 3.) A forward solution is carried out as explained on p. 9. The inverse
end its check are obtained in exactly the same way as the D matrix shown in
table 3 and explained on p.ll, since the D matrix is the inverse of the com-
plete moment matrix. The inverse matrix is symmetrical and of order k.

Methods for inverting nonsymmetrical matrices are given in the appendix.
(See p. 98.)



- 28 -
LIMITED INFORMATION APPROACH FOR SYSTEMS OF SIMULTANEOUS EQUATIONS

This section deals with computational methods for estimating structural
coefficients and their standard errors in a system of simultaneous equations.
The method used is called that of "maximum likelihood limited information single
equation,” commonly referred to as the "limited information” approach. In this
method we proceed to estimate the coefficients and their standard errors for one
equation at a time, with the simultaneity implied by the system taken into account
in the computations. This is in contrast to a "full information" method, which
solves simultaneously for all of the coefficients in all of the equations of the
system. Although the full information method provides standard errors that are
smaller (that is, statistically more efficient), the camputations for most prob-
lems are much more difficult. For a description of full information methods,
the reader is referred to Chernoff and Divinsky (2, pp. 252-259). Limited infor-
mation estimates have the desirable statistical property of consistency and are
as efficient as any other method that utilizes the same amount of information. 8/

In studies that deal with systems of simultaneous equations, it is conven-
ient to divide the variables involved into two groups: (1) Those that are
determined simultaneously within the system, commonly celled "endogenous," and
(2) those that affect the endogenous variables but are not directly affected by
them, commonly called "predetermined." 9/ The endogenous variables are commonly
designated by Y's and the predetermined variables by Z's. Frequently some other
designation is used in the structural equations. For example, disposable income
is at times designated by Y in structural equations, as in the problem on p. 29,
but may be considered a predetermined variable. As with single-equation analyses,
lower-case letters are used to indicate variables expressed as deviations from
their respective means.

Certain other methods can be used to obtain statistical coefficients in
stems of simultaneous equations that also have the desirable statistical prop-
erty of consistency. One of these, the recursive approach, tends to be less
efficient for most problems to which it is applicable than the limited informa-
tion approach, and hence may be less desirable. Others, such as the method of
instrumental variables and an approach suggested by Theil (19,20), give alterna-
tive estimates for the coefficients, depending on the particular variables used.
The authors believe that most research analysts prefer methods that give unique
answers, even though the answers obtained may be no better , in a statistical

sexgés than any one of the several alternative answers given by these other
me .

Criteria of Identification

Since this handbook is concerned primarily with camputational methods, we
§ive only a rule of thumb that relates to identification. One so-called
counting rule” establishes the conditions necessary for identifiability of an
equation in a system of linear equations in vhich, as is commonly the case, the
identifying information consists of a priori knowledge of which variables may
actually enter each equation. This counting rule tells us that if the mumber of
variables in the system (endogenous Plus all predetermined variables, counted

8/ For a brief discussion of the statistical i}
: properties efficiency and consist
ency, see Tintner (18, p. 8) and Klein (13, pp. 52-53). Y
Predec:ciﬁinﬁd varia.bleﬁ include those determined outside of the system,
commonly d "exogenous," and lagged values of the endogenous variables.
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separately) minus the mmber of varisbles in the particular equation equals
the number of endogenous variables in the system less one » We have a Jjust iden-
tified equation. If the number of variables in the system minus the mumber of
variables in a particular equation is greater than the number of endogenous
variables in the system less one, we have an overidentified equation. Just

. identified and overidentified equations both are handled in this handbook es-
sentially by the same approach, although slightly different steps are followed.
If the number of variebles in the system minus the number of variables in the
particular equation is less than the number of endogenous variables in the system
less one, we have an underidentified equation. An underidentified equation can
not, in general, be fitted by statistical methods. 10/

This rule applies only when & single variable is multiplied by each struc-
tural coefficient. The following system serves as an example of one to which the
counting rule does not apply. Here P, and Qf are endogenous and the other vari-
ables are assumed to be predetermined.

Pp =81 + by,(Qq + Qg) + b)Y

Qe = 8p + by (Pr = T) + oY

A superficial application of the counting rule might suggest that these equations
are each just identified, as there are 5 variables in the system, 2 of which are
endogenous, and 4 variables appear in each equation. But each of these equations
in fact is overidentified because we specify in effect that the coefficients for
Qg and Qf and for Pr and T are respectively equal in absolute terms. This is
indicated by the enclosure of each pair of veriables in a parenthesis with a
single common coefficient.

If an error is made in determining the degree of identification of an equa-
tion, it will be immediately apparent in the computation. If in doubt as to
whether an equation is just identified, it is best to assume that it is over-
identified, as errors are most likely to result from ignoring certain restric-
tions of the kind mentioned in the preceding example. As indicated in table 11,
page 51, the computations involved in sections (1) to (8) are the same regardless
of whether the equation is just identified or overidentified. If the assumption
that the equation is overidentified is incorrect, but instead the equation is
Jjust identified, the computation involved in obtaining A (section (9) when there
are 2 endogenous variables in the equation and sections (9.1) and (10.1) when
there are more than 2 endogenous variables) is indeterminate, that is, division
by zero 1is indicated, except for rounding errors. If this occurs, the steps
for a just identified equation should be followed. If, in fact, the equation is
underidentified, indeterminate results will be obtained in attempting to apply
the methods used for just identified equations.

For a further discussion of identification, the reader is referred to
Koopmans (1l4) and Tintner (18, pp. 154-166).

10/ Certain other counting rules have been suggested. In general, these lead
to the same conclusions as the rule given here. Methods based on the rank of
certain matrices can be used to establish necessary and sufficient conditions of
identifisbility. The mathematics involved in these is beyond the scope of this
handbook.
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Camputations Involved in a 2-Equation System
This example is taken fram an unpublished study by Holland _J_y dealing
with the demand-supply structure for construction lumber. The following vari-
ables for the years 1916-41 were used in fitting the equations:

Y, = price per thousand board feet of softwood construction lumber,

in dollars

Y, = per capita shipments of softwood construction lumber, in
board feet

Zl = per capita expenditures for new construction, including maintenance
and repair, in dollars

Z, = per capita production of Portland cement, in barrels

Z3 = index numbers of cost per thousand board feet of manufacturing

softwood lumber, 1916-41 = 100

Uy , up = random error terms for equations (1) and (2), respectively.
The system can be written in the following form:

Yy = a) + byo¥s + 1121 + C10Zp (1)

Yo = ap + b21¥1 + cp3Z23 + up (2)

.For camputational purposes, however » it is convenient to rewrite the
equations in the form:

bl 1 1 1
1Yy + Do ypt ey 2 + oy Zp = uy (1.1)
b2 b2 2
+ =
1 Yo 2ﬁ+ﬁ3 u, (2.1)

The superscripts indicate the equation. When worki with iv -
tion, the superscripts are dropped. The computations ar:ngesignedan?f‘rofl agne:]?al?
tion in which a linear combination of the variables is set equal to a random error
term. Hence, all variables are put on the same side of the equality sign, in the
same order as they appear in ihe original equation, and consecutively numbered b's
and c's are assigned as coefficients to the Y's and z's, respectively. Variables
are expressed in terms of deviations from their respective means and hence are
represented by lower cese letters. The constent terms then equal zero and hence
can be omitted. The relation between the two sets of coefficients in equations

11/ I.{olla.nd, Israel Irving, Some Factors Affecting the Consumption of Lumber in
the United States, with Emphasis on Demsnd. Ph.D. thesis » University of Califor-
nia, 1955. The authors and Mr. Holland realize that Z, should have been treated
as an endogenous variable. A more complicated model tﬁat allows for this may be
fitted later. The model as shown here, however » serves as a useful expository

example.
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(1), (2) and (1.1), (2.1) is as follows:

1 1 1 1
l=bl ,b12=-b2,cll=-¢l,cla=-02;l=b§,b21=-bg,ce3=c]2.,

After the computations are carried out, the values for the constants in the

original equations are determined and the equations are rewritten in the form
given in (1) and (2).

The counting rule is applied to one equation at a time to determine its
degree of identification. For this study, the total number of varisbles in the
system is 5 and the number of endogenous variables in the system is 2. For
equation (1.1), the mmber of variables in the equation is 4. Applying the rule,
5-4 = 2-1 ; therefore, the equation is just identified. For equationn%z.l), the
mumber of variables in the equation is 3; as 5-3 is greater than 2-1, the equa-
tion is overidentified. This information is used at a later stage.

gstimation of Coefficients.--In using the limited information approach,
the coefficients of one equation at a time are estimated. But we first perform

two preliminary computations which are applicable to all equations in the system.
These are as follows:

(1) Campute adjusted augmented moments for all of the variables in the
system. This computation is explained on P. 3. The worksheet should be set
up so that the predetermined variables, the Z's ,come first in numerical order,
followed by the endogenous variables, the Y'S, in mumerical order. For this
example, the camputation of the augmented maments is shown in table 5, the
adjustment factors in table 6, and the adjusted augmented moments in table 7.
The adjusted augmented moments form the basis for all later computations, as
they are the elements of the moment matrices. Table 7 is referred to as the
moment matrix of all the variables in the system. Although we refer to this
table in the explanations that follow, it is not necessary to set it up; we do
80 only for illustrative purposes. While learning the method, however, it may
be convenient to use the equivalent of table 7. Later on, the parts shown in
tables 8 to 10 may be written there directly. In the following explanations,
a reference to table 7 indicates use of the adjusted augmented moments obtained
by multiplying the augmented moments by their appropriate adjustment factors.

(2) Perform a forward Doolittle solution, using the variables shown in
the diagram on p. 33. These computations first are indicated in a shorthand
matrix notation. Some matrix terms are explained on p. 21. New notation is
explained as needed.

We first set up the matrices Myz and Mzy. Mz; includes the moments for
all the z's in the system; Mzy includes moments of the z's on the y's for the
system. Certain variables may at times be amitted from My, and Msy (see p. 66
and 70). In this example, z= (21, 2o, z3) and y= (y1, ¥5). Therefore, MEg is
& 3x3 matrix and Myy, & 3x2 matrix. The elements of these matrices are t )
adjusted augmented moments, which can be obtained from table T or, if this is
not used, directly from tables 5 and 6. Two I columns are obtained, one for
Mg, and the other for sz These columns consist of row sums for.the respec-
tive matrices. As Myz; is a symmetrical matrix, terms below the diagonal are
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Table 5.- Computetion of augmented moments for lumber problem y

Item : Zl Z2 H Z3 Yl Y2 . z
. 26.2 2,249,1 625.3 3,841.0 9,070.87
I*S/I‘::n : 2'353.; 1.0 ’ 86.5 24,0 ’1&7.7 348.87
Extensions @
with-- ¢
: . 63,086.7 855,421.9 v
% s  228,371.8 2,541.8 203,041.3 58,380.1 363,
‘ : . 087. R o74.8  1,517,884.4  9,4h0,255.9 22 240,970.0v
: 5’231’367 N AR ? g7 156 ok  B.046.226.7  21,127,163.1
s~ 512,T73. 61,3
Z 28.5 2,267.9 647.7 4,067.6 9,553.7v
2 Th2.9 58,965.7  16,842.0  105750.s  248,397.87
: 687.4 58,971.4 16,396.4 100,711.0 237,836.3
: 55.“' -5.6 Msoé 5,0’4’8-"’ 10,561.“'/
yA 198,158.7 5k,540,2 327,395.3 7685,403.5 v
3 : 5,152:126.9 1,&1810&5.9 8, 5121 279.8  20,420,493.4 v
: 5,058,450.8  1,406,452.1  8,638,793.1 20,401,136.2 ¥
: 93,676.1 11,593.7  -126,513.2 19,357.17
2 15,805.1 95,7181 225,181k
: 413,273.8 2,488,671.5 5,854, T17.8 ¥
: 391,050.1 2,&01,920.2 5!672,331».0 v
H 22:2230 17 5 1 ‘:3 3.0 ¥
Y, o 611,975.6  1,402,243.67
: 15,911,367.6  36,458,334.5 Y
: 1k,753,281.0  34,840,942.8 ¥
: 1,158,086.6  1,617,391.77

1/ Of the decimal places which were used in the ariginal computations only one is shown in the

table; therefore some of the computations may appear slightly in error.

On the other hand, the

check appears more accurate than is the case when more decimals are shown.

Table 6.- Adjustment fectors for lumber problem

B B kiks for -
Varieble : ky : : : : :
: : ! : %2 : 3 : 1 : Y2
z H 0.001 0.000001 0.0001 0.00001 0.00001 0,000001
Z, H .1 01 .001 .001 - 0001
23 H 01 .0001 .0001 .00001
Yy H 01 0001 00001
y2 H 001 « 000001
Table 7.~ Adjusted sugmented moments for lumber problem _1_./
Variable : zy : 2p : z3 3 b : Y2
s
Zy : 0.5127 0,5017 0.4060 0.6138 0.4940
] : 5543 -.0056 LU56 .5048
Z3 ! 9.3676 1.1593 -1.2651
1 ! 2,2223 8674
y2 s 1.1580

“%Z These computations were Performed with 9 decimal places,
L]

of which only 4 appear in the
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not written. But they must be included when obtaining the elements of the T
column for M,,. The worksheet is of the form:

M2 Moy

Z) % 23TY Yo I

A forward Doolittle solution is then carried out. Computations involved are
explained on p. 9 and, for this example, they are shown in table 8. Note

that in this diagram, as in those that follow, the omitted elements of symmet-
rical matrices are indicated by shaded boxes.

We now begin the computations for the single equations, working first with
the overidentified equation (2.1). In the following computations, a new nota-
tion, y* and z*, is used. y¥* is the vector of y's in the equation under consid-
eration and in the order that they appear in the equation. 2* is defined in
like manner. Therefore, in equation (2.1), y* = (¥, y3) and z* = (33). For
equation (1.1), y* = (¥, yp) and 2z* = (z;, 2p). ‘

The first step is to compute M zld;%d . Before beginning the actual
computations, the analyst should de erminezgl';e y* that are needed in the sev-
eral equations to be golved. This will provide a clue as to the form that the
computation of M zM;%dzy* should take. 12/ For the lumber problem the ele-
ments of My*z“iﬁ: are the same for each equation. Therefore it need be com-
puted only once. e terms then can be rearranged for use with the second
equation. In the present example, it is more convenient, computationally, to
compute this matrix first for equation (1.1) and then rearrange the terms for
use in connection with equation (2.1). If, however, a system had 8 endogenous
varisbles and 4 equations, where for equation I, y* = (¥, ¥5); equation II,

y* = (y3, yy); equation III, y* = (ys5, yg); end equation IV, y* = (m ygg,
My-»zMg zy* should be computed separately for each equation. This the case
for the system discussed on pp. 63-67. On the other hand, in the following
system of equations where for equation I, y* = (yl, Yo ¥ ); equation II, y* =
(y2: Yas Yoo yé); equation III, y* = (yex Y Y5, }"'{)5 anz equation IV, y* =
(Yl, Y25 ¥3» Y ¥ ), the number of calculations could be substantially reduced

by computiig the complete M, M IM . rather than the separate My*zM;%sz* for
each equation.

The computation of zM;]z'sz* for equation (1.1) is shown in tsble 8
immediately below the forward solution. The computation of this matrix from
specified terms of the M, part of the forward solution is analogous to the
computation of the D mauqx for the multiple regression problem (see p. 11).
Using only the last two rows in each section_ of the forwerd solution, the ele-
ment in the ith row and Jjth column of Myﬂ-zM;Jz'sz* is obtained by cumulating the

Chernoff
12/ The method used in this handbook differs from that described in
and Divinsky (2, p. 242) where the complete Mydd;kdzy is always computed. For

some types of equations this involves many needless computations
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products of the terms in the next to last row of the ith column with the terms
in the last row of the jth column. For example, if my j are the elements of

My*z“z%“zy* » then:
m7=(0.6138)(1.1970 )+(-0.1549)(-2.4481 }+(-0.3132)(-0.0483) =1.1293
m; =(0.6138)(0.9634)+(-0.1549)(0.3383 }+(-0.3132) (-0.2345)=0.6124
m12=(o.6138)(2.16oh)+(-o.15&9)(-2.1098)4-(-o.3132)(-o.2828)=1.7u17

The check placed next to the items in the I column at the bottom of this section
indicates that the camputations are correct, except for possible rounding errors.
As this matrix is symmetrical, the terms below the main diagonal are not computed.
In obtaining the check by summing across the items in the row, the omitted terms
must be included in the sum. *zM'}sz* for equation (2.1) is obtained by re-

arranging the elements of that for equation (1.1). The nature of this rearrange-
ment is clear from the table.

In the following computations, we first work with the overidentified equa-
tion (2.1). This is done chiefly for expository reasons, as it is easier to
understand the computations for an overidentified equation than for a just
identified one. In the solution of an actual problem, the equations probably
would be fitted in order. In some systems of equations, certain equations may
involve only a single endogenous variable. In such cases, these equations can
be fitted directly by least squares, but the predetermined variables involved
in them should be included in the Mz, matrix. Equations that can be handled by
least squares always can be fitted by the method described in the first major
section of this bandbook. (See p. 2.) In some instances, however, many com-
putations can be saved by what in effect is & simultaneous approach for both the
equations that are to be fitted by the limited information method and those that
can be handled by least squares. Examples are discussed in detail on pp. 69-76.

In operations that involve multiplicetion of symmetrical matrices that have
missing elements, the missing elements should be filled in before performing the
multiplication; otherwise it is difficult to determine which elements are in-
volved in the product. Elements can be omitted from the product matrix, however,
unless it is to be used in further multiplications, as it is always symmetrical.
Missing elements are not needed in connection with addition and subtraction, &as
this is carried out on a term by term basis. Missing elements that are needed
have been shown in tables 9 and 10. This explains why same matrices are shown
in full, while in others the elements below the main diagonal ere omitted.

In obtaining the coefficients for equation (2. 1) we first compute Wy-x-y* =
Mywyx - My*z“zk'izy* This computation is of the form:
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Mywgw - My MpMoye = Wy
ye yl T YQ yl z YQ yl z

These computations are shown in sections (1), (2) and (3) of teble 9. Section
numbers refer to the order in which the computations are performed. Arranging
them as shown avoids needless copying of data. Steps involved in these 3 sec-
tions are as follows: (1) Copy Myw,MziM, » for equation (2.1) from table 8.
Here, as in other instances of copying matrices, the I column is also copied.
The check is obtained by recomputing the sum across the copied row, including
the omitted figures. This should be identical with the figure in the Z column.
13/ 1If not, an error was made in copying. (2) My#y*, a symmetrical moment
matrix of the y*'s, is obtained from table 7. For this example the y's are
reversed in order. A column, I, composed of row sums is computed. (3) W

is obtained by subtracting (1) from (2), element by element, including the ltems
in the T columns. The sums across the rows of W are obtained and the fact
that they are identical with the items in the Z column of the respective rows
of Wyxy* is indicated by a check mark. This provides a check on the computation.

We now compute P' = M;&Z*Mz«y* This computation is of the form:

M;%z* X Mgeyx = P!
z3 Yo ¥1 2 oY1 Z

z3 z3 23

See sections (4), (5), and (6) of table 9. (4) z* has only one element. There-
fore, Mzx;% is & scalar or ordinary number equal to 9.3676. Its inverse, Moz,
is simply the reciprocel of that number or 1/9.3676 = 0.1067. If z* had more
than one element, other methods described on p. 26 would be used for inverting
Mz%z% (5) Mz#y* is a moment matrix. It can be copied from the upper section of
the forward Doolittle solution, table 8, or directly from table 7. A colum, 2,
composed of row sums, 1s computed. (6) As explained in the section on matrix
miltiplication, a scalar times a matrix equals a matrix whose elements are those
of the original matrix, including I, each multiplied by the scalar. That the
sum across the row of P' is identical (except for possible rounding error) with
the element in the I column of P' is indicated by a check mark.

We next compute My¥P'. See sections (5), (6), and (7) of table 9.
Sections (5) and (6) were obtained in the previous step. (7) To obtain mj,
the 1jth element of My-x-z-:-P' , multiply the ith column of Mz#y*, excluding I,

13/ Rounding errors occur only when the indicated operation is multiplication
or division.
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with the jth column of P', including £. For example:

m; = (-1.2651)(-0.1350) = 0.1708
mo = (-1.2651)(0.1237) = -0.1565
my = (-1.2651)(-0.0112) = 0.01k2
mpp = (1.1593)(0.1237) = 0.143h

mpy = (1.1593)(-0.0]_12) = =0.0130.

the rows of «P' arve identical (except for possible
mgz iﬁra:;r?rz:h the element}:yzxzz the respective rows of the I ?oltmn of
xP' is indicated by a check mark. Use of column-by-column multiplication
is discussed on p. 101, As the product matrix is symmetricel,elements below the
diagonal need not be computed.

We now compute Byxyx = MyaMzMyyx - MypsP'. This computation is of the
form:

MoaMMpyn = MpugaB' = Byape

Yp¥1 2 Y2 V1 T Y2 T1Z

See section (1), (7) and (8) of table 9. Sections (1) and (7) were obtained in

previous steps. (8) By*{x- is obtained by subtracting (7) from (1), element by
element, including the elements in the £ columns. The sums across the rows of

BK:{* are obtained and the fact that they are identical (except for errors
t result from the carrying of only U4 decimals) with the elements in the
Z column of the respective rows of By*y* is indicated by a check mark.

We now compute A. See section (9) of table 9. Let wij be the elements

of Wyxy* in section (3), and byj, the elements of Byxyx in section (8). Then
compute:

pL= IVl = v - vEp
P2 = Vi1bop + by Ve - 2b12V12
pP3 = |B| = buibge - vio
1/2p3
5 - bp1p3
P2 - keipy
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X='§%é (p2 + \/Pg = hP1P3)

We next compute Ry*y* = wmﬁ - ).By*y.,.. This computation is of th
form: °

- ABywywe = Rywy

?2 yl p) ya:yl z

2

See sections (3), (10), and (11) of table 9. Section (3) was obtained previ-
ously. Section (10) is obtained by multiplying each element of Byw#y#, includ-
ing 2, obtained in section (8), by the scalar, A, computed in section (9).
That the sums across the rows of ABy#y# are identical (except for possible
rounding errors) with the elements in the respective rows of the L column of

is indicated by check marks. (11) R is obtained by subtracting
(10) " from (3), element by element, including the elements in the £ columns.
The sums across the rows of R are obtained and the fact that they are
identical (except for errors zhat result from the carrying of only 4 decimals)
with the elements in the I column of the respective rows by Ry*y* is indicated
by check marks. An additionsl check on the computation of Ry-x-y*, as well as
on the computation of A, is to compute|R| = r13rps - r15, where the ryy are
elements of Ry#y*. [R| should equal zero.

-

b' is the vector of the coefficients of the endogenous variables, the y*'s.
For equation (2.1), and any other equation where the number of endogenous
veriables is equal to two:

We now compute:

1
b' = [-ryy
12 ry1
See section (12) of teble 9. b; = 1 by definition (see p. 31) and by = - Fl;’
where ry; and rj, are elements of Ryyx, obtained in section (11). 1k/
We next compute ¢' = -P'b'. c¢' is the vector of the coefficients of the

predetermined variables, the z¥'s. This computation is of the form:

yy This method for obtaining the coefficients, already normalized, differs
from that discussed in Klein (13, pp. 179-180) and Chernoff and Divinsky
(2, p. 245), where the coefficients are first obtained and then normalized.
Normalization, in this sense, refers to the tramnsformation of coefficients so
that by = 1.
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_P' x 'bl = cl
Y2 N3
-23 I:::] Yal1 Z3 D
1

Note that for equation (2.1), z* has only one element, and therefore c! is a
scalar. See sections (6), (12), and (13) of table 9. Sections (6) and (12)
were obtained previously. (13) c¢' is obtained by multiplying -P', exclud-
ing 2, by b'. Computationwise, it is easier to neglect the minus sign pre-
fixed to P'. Instead, multiply P' by b', and then change the sign of the re-
sult. This gives c¢'. The check in this step is one of recomputation.

In an actual problem, we would continue with equation (2.1) and estimate
the standard errors of the coefficients Just computed. But for illustrative
purposes, we first proceed to estimate the coefficients of the just identi-
fied equation (1.1). The relevant computations are shown in table 10.

For equation (1.1), z* = (23, 2zp) and y* = (y;, ¥p). The matrix shown
in section (1), table 10, was computed in table 8. Since the same y's, al-
though in reverse order, are involved in equation {2.1), scme of the campu-
tations can be eliminated. This always is the case when the same variables
appear in several equations. For example, compare the matrices in sectioms
(2) and (3) of tables 9 and 10. Those of table 10 can be obtained from those
in table 9 by reversing the arder of the y's. In making the computations for
several equations, steps should be copied whenever possible. The copying can
be cheggd as described on page 37. After copying these matrices, we compute

=M

P! *Mz*y*. This computation is of the form:
-1
M X Maey =P
21 2% Y1 Y2 Z Y1 ¥y2 I
Z) Z %1
Z2 Z2 Z2

See section (4), (5), and (6) of table 10. (L) Since M is a 2x2 matrix
it should be inverted according to the defin:l(.t.’)mon givenz:xzz*page 26, fThese ’
computations, shown in sections (ka) and (kb), are as follows: (La) Write
#z%; Which is obtained from the upper section of the forward Doolittle solu-
tion in table 8. A columm, T, composed of row sums » is also computed but
does not enter into the computations until a later stage. (b)) write the
adjoint of M,x,x. This is obtained by interchanging the elements im the main
diagonal of M, 4,x and changing the sign of the elements not in the main diago-
nal. Preceeding this matrix, write l/]Ml where |M| is the product of the
diagonal elements of M;%,* minus the product of the nondiagonal elements.
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= (0.5127) (0.5543) - (0.5017) (0.5017) = 0.0324.

%ﬁ)tﬁzs :.xigpt‘:{;af{l:el:d b3(r mgltzl)ﬂy(ing the elements of the adjoint of Mzx;» by
l/ M? This computation is the same as that described on page 26, although
in the latter no mention is made of the ad,jo].’;nt matrix. fIns;Et the ;ih:sﬁck

and c te a column, I, composed of row sums, for M y ..
gie!:;:tEMtam of the inverse is obtained by cmmlativelyzmﬁt plying the
elements in the Zcolumn of M, y,x by the elements in the Z colum of the corre-
sponding rows of M'}(_z*; this sum should appraximately 15/ equal two, the
order of the matrides involved. (5) Mzay* is obtained from the upper section
of the forward Doolittle solution, table 8. A column, 2,1 composed of row
sums, is computed. (6) P' is obtained by multiplying M’y . by Mz*{*. As
explained in the section on matrix multiplication, the %J%l; elemef of P' is
obtained by summing the products of the elements of the row of M’*z*, exclud-
ing Z, with the elements of the jth column of Mz.x},*, including the T column.
If piJ are the elements of P', then:

Py = (17.0739) (0.6138) + (-15.4556) (0.4456) = 3.5925
P{, = (17.0739) (0.4940) + (-15.4556) (0.5048) = 0.6323
P]'_z = (17.0739) (1.1078) + (-15.4556) (0.9504) = k4.2249
P, = (-15.4556)(0.6138) + (15.7947) (0.4456) = -2.4481
Py, = (-15.4556)(0.4940) + (15.7947) (0.5048) = 0.3363
Pye = (-15.4556)(1.1078) + (-15.79%7) (0.9504) = -2.1098

That the sums across the rows of P' are identical (except for possible round-
ing errors) with the elements in the respective rows of the £ column of P' is
indicated by check marks. This checks the computation. An additional

row, X', composed of column sums, is computed for P' and used in later compu-~
tations.

We now compute #P'. See sections (5), (6), and (7) of table 10.
Sections (5) and (6) Were obtained in previous steps. (7) The ijth element
of z%P' 18 obtained by summing the products of the elements of the ith
column of Mz#y®, excluding £, with the elements in the Jth column of P', in-
cluding £ but excluding £'. If mij are the elements of My.;.z...P', then:

15/ The word "approximately” is used deliberately in preference to the
term "except for possible rounding errors" which has been used in comnection
with checks on matrix operations. In an overall check of this type, an extra
accumulation of rounding errors occurs which has to be taken into account.
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myy = (0.6138) (3.5925) + (0.4456) (-2.4481) = 1.114
m, = (0.6138) (0.6323) + (0.4456) (0.3383) = 0.5389
m = (0.6138) (4.2249) + (0.4456) (-2.1098) = 1.6531
m,, = (0.4940) (0.6323) + (0.5048) (0.3383) = 0.4832

myy = (0.4940) (4.2249) + (0.5048) (-2.1098) = 1.0221

That the sums across the rows of %' are identical (except for possible

rounding errars) with the elements”in the respective rows of the £ column of
M . xP' is indicated by check marks. It will be remembered that colum-by-

cgll:zm multiplication was used in the corresponding step in table 9.

Although the matrices in sections (5) and (6) are nonsymmetrical, the ma-
trix in section (7) is symmetrical. Hence, in obtaining the product matrix
P', all elements must be computed, but in obtaining the product matrix My_,z*P’,
the elements below the main diagonel need not be computed.

We next compute Bywyx = MyxMzzMy x - MyuaP'. This computation is of

the form:

=, ]
My*zmzimzy* - My"."z'“'P
Yy Yy oz ¥y T z

Yo

See sections (1), (7), and (8) of table 10. Sections (1) and (7) were ob-
tained in previous steps. (8) Computations involved in obtaining Byxyx are
explained on page 35.

We now compute ;b' = - [llB] '1‘.31 . Db' is the vector of the regression
coefficients of the endogenous variables, the y's, in equation (1.1), t{at
is, b' = bl > but by = 1 by definition (see page 31). Therefore b' = [bz-"

b’ is D ith its first element cmitted, that is, 10" = [by] 1B is Byeyx
with the first row and first column omitted. By is the first column of
with the first element omitted. See sections (9.2), (10.2), and (11.2) of
table 10. (9.2) We copy By#yx, omitting the first row and first colum.

was obtained in section” (8). B is therefore a single element, 0.3565;
its" inverse, as explained previously, is the reciprocal of that element, so
that ,B~1 = 1/0.3565 = 2.8050. (10.2) Before obtaining By, missing elements
in must be inserted, at least mentally. The first column of with
its Tirst element omitted is a scalar, 0.0734. (11.2) b' is obtaihed by
miltiplying - 11B -1 by Bj. 31b' is the product of two scalars and is itself
& scalar., The check here is one of recomputation. As in section 13 for
equation (2.1), computationwise, it is easier to neglect the minus sign
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efixed to 11B"1  Instead multiply -1 by B,. Then change the sign of
ﬁ‘xe result t%lg;t; 1b'. If more than ;c%zo endogzlnous variables were included
in the equation, would be of an order greater than two and other methods
would be used’to invert 11B (see p. 26). 1b' would then be the product of a
matrix times a vector and would itself be a vector.

‘We now compute ¢' = -P' b'. This computation is of the form:

-P! X ' = c!
¥y ¥,
z) y1 |1 2z
- Zo. Yo Z2
z Pl

See sections (6), (12.2), and (13) of table 10. Section (6) was obtained
previously; in the following computation we make use of ', a column sum,
rather than 3, a row sum. (12.2) 1b', which is b' with its first element omit-
ted, was obtained in section (13..2}. However, b, = 1 by definition. There-
fore we can write b' by inserting the omitted el€ment, by, in ;b'. (13) c!

is obtained by multiplying -P', including X' and excluding Z, by b'. That the
sum of the elements of c' is identical (except for possible rounding error)
with the element in the Z' row of c¢' is indicated by a check mark. This
checks the camputation. Computationwise, it is easier to neglect the minus
sign prefixed to P'. Instead, multiply P', including Z' and excluding Z, by
b' and change the sign of the result to get c¢', including £'. Then perform
the check in the usual way.

Estimation of Standard Errors of the Coefficients.--We now consider the
computations involved in obtaining the standard errors of the coefficients,
beginning with the overidentified equation (2.1) (see table 9).

First we campute bwy*y.,.. This computation is of the form:

b X Wyuye = DHywye
Yo N1 Yo Y1 T VYo ¥ Z

Y2

Y1

Section numbers are continuations of those used to obtain the coefficients.
See sections (14), (15), and (16) of table 9. (14) b is & row vector ; it is
the transpose of the columm vectar b' obtained in section (12). (15) Wyy
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was computed in section (3). It is copied in section (1 incl -
sing element and Z, The check marks next to the items £n51);1’1e Zcolu.gi;g 1:;2:—'!18
cate that they are identical with the sums across the rows of the copied
WQ*, They confirm the eopying. If preferred, this computation can be car-
r out directly by use of the data in section (3) including the missing
element. (16) bW is obtained by multiplying b by Wywyx, including .
That the sum across the row of WWyxyx 1s identical (except” for possible round-
ing error) with the item in the £ colummn is indicated by a check mark. The

reader will note that subscript designations for Wy-x-y* are omitted in sections
(16) to (18) of the table.

We now compute bW b'. See section (14), (16) and (17) of table 9.
Sections (14) and (16) were obtained previously. (17) bw. b' is obtained
by cumlating the product of the ith element of bWy ei:{:ding Z, with the
ith element of b. (bW and b are always vectors and therefore bWyeyx b
is always a scalar.) In this example, bWyxy* b' = (0.1002) (1)

+ (-0.6801)(-0.8555) = 0.6820. This is, in effect, row-by-row multiplication
(see p.101).

We next compute u{(bex-y*) 'be*y*}. See sections él6) and (18) of
table 9. Section (16) was obtained previously. (18) 13- bwy*y*) THW.

is the matrix (bWywy*) 'oWysy* with its first row and first column omitted.

We do not have to compute the entire matrix, (bwy—x-'y*) "bWyy*, but only that
part in vhich we are interested, that is, 11{(bWywy*) 'bWyxyx). In this
example, (bwy-n-{*) "WWyry* is a 2x2 matrix, so that if the first row and first
column are cmitted, we are left with a scalar, which is obtained by squaring
the second element of bWywyx. That is, 13{{bW )'bwy*y*} = (-0.6801)(-0.6801)
= 0.4625. The reason for this will be clear to The reader if he writes dovn
the product matrix that would result from the multiplication of a column vector
by a row vector, where each vector contains the same elements. The check on
this operation is one of recomputation. If, however, there were more than two
elements in y*, u{(bww) 'bwy*y*} would be a matrix.

We now compute
D=1/ A ( A was obtained in section (9).)

D
bHy*y*b ! (bWyxy»b' was obtained in section (17).)

14D
c=(1+0D) bwy*y-x-'b'

C* = C/N', where N' is the sample size minus the total number of
variables in the equation. These computations are shown in section (19).
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We now compute ,,G = - D — X ]_1{( bW_, “)‘bwy_x_y* . See sections

18), (19), and (20) of table 9. Sections (18) and (19) were obtained pre-
w(rim):;h(r.g)iao) ]_-,(_G 3.3 obtained by miltiplying 13{(bWysy%) "Biyxy+}, obtained
in section (18), by D , computed in section (19).
bwy*y*bi

We next compute 1;H = 11B - 176G See sections (20), (21), and (22) of
table 9. Section (20) was obtained previously. (21) 11B is obtained by
eliminating the first row and first column of , obtained in section (8).
(22) ,.H is obtained by subtracting (20) from (21). It should be noted that
in this example sections (20), (21), and (22) are scalars. If there were more
than two elements in y*, they would be matrices and the usual checks on matrix
subtraction would be carried out.

We now compute Fpy, = llH'l. See section (23) of table 9. (23) Fyy, is
obtained by taking the inverse of 1;H, computed in section (22). 1In this
example j7H is & scalar and ite inverse is the reciprocel of that number. If,
k(xowever, H were a matrix, other methods of matrix inversion would be used

see p. 20).

We next compute F'y, = ) P'Fy,. See sections (23), (24), and (25) of
table 9. Section (23) was ob%a.ine previously, (24) o, P' is obtained by
eliminating the first column from the matrix P' obtained in section (6).

(25) Fpo 1s obtained by multiplying 5 P' by Fyp, . Note again that o P', Fyy,
and F'y. are scalars. If they were higher order matrices, matrix tiplica-
tion and the usual checks would be performed.

We now compute U = 51 P'Fy .. See sections (24), (25), and (26) of table
9. Sections (24) and (25) were obtained previously. (26) Since orF' and
F'ye are both scalars, U is obtained by multiplying o1P' by F'.b . }f such
were not the case, matrix multiplicatien would be required, keeﬁing in mind
that the product involves the transpose of F'ye+ An efficient method to per-
form this operation is described on pp. 47-48.

We next compute Fo, = U + Mzk . See sections (26), (27), and (28) of
table 9. Section (26) was obtained previously. (27) Mg; % was computed in
section (4). (28) F,. is obtained by adding (26) and (27?. If higher order
matrices were involved, the usual checks on matrix addition or subtraction
would be performed (see p. 37). The check here » 88 in the computations above
where only scalars are involved, is one of recomputation.

We now compute C*¥Fp,. See section (29) of table . C*¥Py,,, is ob-
tained by multiplying Fy;, obtained in séczg.on (23), bg C*faggmputgg 12 :eC-
tion (19). The diagonal elements of C*¥Fy,, are the variances (square of the
standard error) of the b's, excluding by. The variance of b) equals zero by
definition., In this example, C*F, is & scalar. Therefore the variance of
by equals C*¥Fppe As in earlier examples, the coefficients and the veriances

need to be deadjusted to apply to the original data. This is discussed in a
later section. :
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We next compute C*F,.. See section (30) of table 9. (30) C¥F__ is
obtained by multiplying F.., obtained in section (28), by C*, compufSd in sec-
tion (19). The diagonel elements of C*F,. are the variences of the c's. In
this example, there is only one ¢, that is, . Therefore, C¥F,, is a scalar,
and the variance of c¢; equals C*F..

When more than 2 y* or more than 1 z* are involved, only the diagonal
elements of C¥Fyy, and C¥F,, need be computed.

We now proceed to estimate the variances of the coefficients of the just
identified equation (l.l;‘ The relevant computations are shown in table 10.
Sections (14), (15), (16), and (17) are obtained in exactly the same way as
for the overidentified equation (see table 10 and p. Lk).

For a just identified equation, there is no section (18) comparable to
that for an overidentified equation.

]
We next compute C* = Diysy b , where N' equals the number of observa-
]

tions minus the total number gf varisbles in the equation. See section (19.2)
of table 10. (19.2) C* is obtained by dividing bW, x.xb', which was computed

in section (17), by N'. For this example, bW,y #b' 1s divided by 26 - b = 22,
Note that the subscripts on Wy*y* have been omyREed in this part of table 10.

Computations comparesble to those of sections (20) to (22) of the overiden-
tified equation, table 9, are not obtained for a just identified equation.

We now compute Fyp = B-1l. See section (23.2) of table 10. (23.2) Fyy
is obtained by taking ghe nverse of uB. As this computation was performe
in section (9.2), section (9.2) is copied into section (23.2).

We next compute: F'c = OIP'be. See sections (23.2), (24), and (25)
of table 10. Section (23.2) vas obtained previously. (24) o3P' is obtained
by eliminating the first column of the matrix P' obtained previously in sec-
tion (6). This column,including ', is copied from section (6). That the
sum of the elements of the copied column of o P' is identical with the item
in the ' row is indicated by a check mark. %25) Fi. 1is obtained by multiply-
ing the elements of 3P', including Z', by Fyp. That the sum of the elements
of the column of F! 1is identical (except for possible rounding error) with
the element in the 3' row is indicated by a check mark. This checks the com-
putation. It should be noted that Fyy, in this example is a scalar. If there
vere more than two elements in y*, Fy; would be a matrix, and the usual matrix
miltiplication would be performed.

We now compute U = g1P'Fp.. See sections (24), (25), and (26). Sections
(2k) and (25) were obtained previously. (26) U is a matrix whose ijth element
is equal to the product of the element in the ith row of . P', excluding Z',
by the element in the jth row of F.t') o? including I'. In this example, if we
let uy 3 be the elements of U:
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wq = (0.6323) (1.7738) = 1.1217
w, = (0.6323) (0.9490) = 0.600L
w, = (0.6323) (2.7228) = 1.7218
Uy, = (0.3383) (0.9490) = 0.3210
upy = (0.3383) (2.7228) = 0.5212

Thaet the sums across the rows of U are identical, except for possible round-
ing errors, with the elements in the respective rows of the Z column of U is
indicated by check marks. Note that row-by-row multiplication is used here.
If .P' and F-; were higher order matrices instead of vectors, as would be
theo%ase if y* had more than two elements, U would be a matrix whose ijth ele-
ment would be the cumulative product of the elements in the ith row of g} L
excluding the row T', by the elements in the jth row of Fy., including

(see p.101).

We now compute Fo. = U + M;.:,I;z*. See sections (26), (27), and (28). Sec-

tion (26) was obtained previously. (27) Mk, was obtained in section (4).

It can be copied into section (27); the usual check on copying matrices is
performed (see p. 37). If preferred, section (27) can be amitted. (28) Fec
is obtained by adding (26) and (27), including their respective Z's. That
the sums across the rows of Fee are identical, (except for errors that result
from carrying only 4 decimals) with the elements in the respective rows of
the I column of Fec is indicated by check marks.

We next compute C*¥Fpp,. See section (29). (29) C*Fy; is obtained by mul-
tiplying Fy, obtained in section (23.2), by C*, computed in section (19.2).
C*Fy, equals the variance of bo.

We now compute C*F... See section (30). (30) CXF,. is obtained by mul-
tiplying F,., obtained in section (28), by C*, computed in section (19.2).
As explained before, the diagonal elements of C*Fcc are the variances of the
c's. The element in the upper left—~hand corner is the variance of c); the
element in the lower right-hand corner is the variance of cp. Standard errors
of the coefficients are obtained by taking the square root of the variances

of the respective coefficients. If desired, only the diagonal elements of
this matrix need be computed.

We now return to the equations in their original form, that is, equations
(1) and (2). The computations involved are shown at the bottom of tables 9

:n%lloé The following explanation is in terms of the overidentified equation,
gble 9.

Column (1): List the variables in the order tha
equation (2). © they eppesr in



- ko -

Column (2): Enter the estimates of the coefficients in equation (2).
This is done by referring to the relationship between the coefficients in the
original equation (2) and the rewritten form for computational purposes,
equation (2.1), given on p. 31, and to the b' in section (12) and the c' in
section (13). For example, the coefficient on Yo is 1, since the coefficient
of the first varieble is always 1. '°21 = -bg. Since b2, the second element
in b', equels -0.8555, byy = 0.8555. Similarly, o3 = -c). Since c;, the
element in c*, equals 0.2}&0 » Cp3 = -0.2L409. 1

Column (3): Enter the estimates of the standard errors of the coeffi-
cients in equation (2). There is no standard error for the first coefficient.
The standard error of by equals the standard error of by, which is obtained
by taking the square root of C*¥Fy,, section (29). If there were more than
two elements in y* and hence more than two b's, their standard errors would
be obtained by taking the square roots of the disgonal elements of C¥Fyp»
which would then be a matrix. The standard error of coq equals the standard
error of c;, which is obtained by taking the square root of C¥Foo, sec-
tion (30)." If more than one element were in z*, as in equation (1.1), the
standard errors of the c's would be obtained by taking the square roots of the
diagonal elements of C*F,. (see p. 62).

Colum (4): Copy the k; for the respective variables from table 6.

Column (5): Compute ki, obtained by dividing ki by the value of k for
the first variable in column (1). That is, k! for Y; and Z; is obtained by
dividing their respective k; by 0.001, the value of k for Y3.

Column (6): Deadjusted coefficients are obtained by multiplying the
elements of column (2) by those of colum (5).

Column (7): Deadjusted standard errors are obtained by multiplying
the elements of column (3) by those of column (5).

Column (8): Enter the means of the variables, which are obtained from
table 5.

Column (9): Computations in this column are used in obtaining the con-
stant for the equation. Multiply the elements of column (8) by those of col-
wm (6) and compute their sum. This can be cumulated directly in the machine.
The constant in the equation, a, is obtained by subtracting this sum from the
mean of Y, the first element in column (8). Hence a = 147.7307 - (-2.6520) =
150.3828. This result cen be recorded directly as the first term to the right
of the equality sign in the finel regression equation shown in the last row
of this section. The figures within the parentheses are the deadjusted stand-
ard errors of the coefficients.

The check in this section is one of recomputation.

Dead Justing the coefficients and their standard errors, and the writing
of equation (1), are accomplished in like manner in table 10.
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Modifications with Sgecified Nunbers of Endogenous

and Predetermined Variebles

In the last section we described computations involved in epplying the
limited information approach to a 2-equation model of a given type. Here we
discuss modifications in the procedure required when the equations involved
are of a different type. These modifications result from the fact that we
frequently work with equations where the number of elements in y*, in z¥, or
the degree of identification differ from those of the equations in the lumber
model. The modifications may appear in the form of alternate steps--for
example, the case of an overidentified equation where the number of elements
in y* is three or more--or suxiliary steps--for example, a variation of the
Doolittle method to invert My#z% where the number of elements in z%* is three
or more. In addition, the form of many of the matrices shown in tables 9 and
10 mey be changed due to an increased number of variebles. For example, a
scalar may become a vector, or a vector a larger matrix. Furthermore, the
increased size of the matrices sometimes necessitates the introduction of
additional checks on matrix operations.

Table 11 summarizes some of these modifications; others are explained in
the text. The section numbers in table 11 are the same as those in tables 9
and 10. The section numbers of teble 9 are taken as & standard. They repre-
sent the necessary steps for an overidentified equation with two elements in
Y* and one element in z*. Additional section numbers are indicated by the
following scheme: (1) A number with a digit to the right of the decimal in-
dicates an alternative method necessitated by the identification of the
equation. For example, (9.1) and (9.2) refer, respectively, to the alternates
to section (9) of table 9 for (a) an overidentified equation whose elements in
y* are three or more, and (b) & just identified equation, regardless of the
number of elements in y* or z¥. A section number followed by ".1" refers to
en overidentified equation; one followed by ".2", to a just identified one.
(2) A number followed by a letter indicates an auxiliary step necessary to
produce the matrix for the section indicated by the number. For example,
(4¢c) indicates a variation of the Doolittle method to invert Mzxz% required
for section (4). "c" always refers to a variation of the Doolittle method to
invert a matrix vhose order is three or more. (3) A number to the right of
the decimel and a letter combine the two previous attributes. For example,
(9.2¢) refers to a variation of the Doolittle method to invert the matrix re-

quired for section (9.2), which itself is a variation appliceble to Just
identified equations.

We first discuss teble 11, section by section, (1) to note changes in
the size of the matrices with an increasing number of variebles, (2) to intro-

d\;:e new checks on the matrix operations and (3) to explain new or additionsl
steps.

In the following explanation, the letter & denotes the number
of elements
in y*, and h, the number of elements in z*. A matrix of order g refers to a
matrix having g rows and g columns. Furthermore » when we state that a matrix
has g rows (colums), we know that the first row (column) corresponds to the
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Teable 11l.- Alternative steps involved in computetions for
equetions with specified characteristics

Section
t:; :z:;n “ ‘ Same procedure for all
(3) Hpege
) M OO R T O
(5) Mpuye
(6) p' :
: Same procedure for all
(7) MywzaP :
(8) Byuys
; Overidentified equation B Just identified equation
: : : =22/ : g=32 : g2 42
(9) : ¢ (9-1), pp. 53-5% : , table 10 : (9.2a), (9.2b), p. 57 :(9.2¢); p.
(10) : (10), do. : (10.1), pp. 53-55 : (10.2), teble 10 and pp. 57-58
(11) (11), 4o. (11.1), pp. 55-56 (11.2), Do.
(12) (12), do. (12.1), pp- 56-57 (12.2), Do.
(13) e
() v
(15) Wymyw Same procedure for all
(16) LU :
(17) vWywywd'  :
. Overidentified equation : Just identified equation
(18) (18), teble 9 and p. 59 No comparsble section
(19) (19), do. (19.2), table 10 and p. 60
(20) (20), do. No comparsble section
(21) (21), do. Do.
(22) (22), do. Do.
Overidentified equat;.on : Just identified equation
i g=22 _: = : : =22/ : g=-32 : g=lz2/
{23) : (23], table 9 :(23e), 23.2), copy results from (9.2)
(24) o P
(25) F'ye
(26) v
(27) M;a];z* . Same procedure for all
(28) Fcc %
(29) ooy,
(30) c¥r,,

— 2/ g denotes the number of elements in y*.
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first element of y*, 16/ and is so designated; the second row (column) corre-
sponds to the secom,l ‘element of y*, and so forth; so that, in general, the ith
row (colum) corresponds to the ith element of y*. A similar statement can
be made for a matrix with h rows or columns by substituting z¥* for y¥.

Section (1):My#zMz .--The computation of this matrix is explained
on p. . ere are g colums in addition to a 2 column composed of row
sums. It is a symmetrical matrix of order g. As with all symmetrical
matrices, the terms below the main diagonal need not be computed; however,
they must be included in obtaining the row sums. The computed matrix, in-
cluding %, is copied into section (1) and the check on copying is performed
as explained on p. 37.

Section (2) éF'ﬁ .~=The formation of this matrix is explained on p. 37,
It is a symmetr matrix of order g, with an additional Z columm.

Section (3):;;5,-_! .--The camputation of this matrix and its check is
explained on p. . It is a symmetrical matrix of order g, with an additional

Z column.

Section (%) :M;lz* .-=The computation of this matrix ies determined by the
number of elements in z*, h:

If h = 1, see section (4), table 9, and p. 37.

If h = 2, see sections (4a) and (4b) of teble 10, and p. L4O.

If h> 3, use a variation of the Doolittle method to invert Mzkz#.
This constitutes section (4c). For an explanation of the computations involved,
as well as the check on this computetion, see p. 26. Eh:ls computation is best
carried out on a separate worksheet and the result, Mz®z*, including I, the
column of row sums, and the missing elements, entered into section (4). At
zzimes use c§n be made of part of the computations necessary to compute M;}
See p. T5.

Milz* is a symmetrical matrix of order h, with an additional Z column.

Section (5):M; .--The formation of this nonsymmetrical matrix is
explained on p. 37 . It has h rows and g columns, with an additional I
column.

.y Section (6):P' .--This nonsymmetrical matrix is obtained by multiplying
Mz¥z% by Mz¥y*. Scalar multiplication and its check are explained on p. 40.
Matrix multiplication and its check are explained on p. 24. Like Mz#y%, P!
bas h rows and g colums, in addition to a Z column. A row, Z', composed of
column sums is obtained if there are two or more rows in P' and is used in

later computations. (See sections (13), (24) and (25).) All elements of this
matrix must be computed.

16/ See p. 32.
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Section (7):5%:2*? -=-This computation is explained on p. 37, and is
sumnarized here. To obtain the ijth element of My#z%P', cumulate the prod-
ucts of the terms of the ith column of Mz#y*, excluding Z, with the jth column
of P', including Z but excluding the row £'. That the sums across the rows
of *P' are identical (except for possible rounding errors) with the items
in the respective rows of the I column of My%,%P' is indicated by check marks.
This provides the check on the computation. My*z¥P' is a symmetrical matrix
of order g, with an additional £ column. Note that column-by-column multipli-
cation is used in this step.

Section (8) %Fy_l- -=-The computation of this matrix is explained on p. 38.

It is7a symmetrical matrix of order g, with an additional I column.

Up to this point the steps are exactly the seme regardless of the degree
of identification of the equation, the only variation arising from the number
of elements in z¥*. However, for sections (9) - (12), as indicated in
table 11, there are alternative methods according to both the degree of
identification and the number of elements in y#.

Sections (9) - (12):For Overidentified Equatioms.--(1) If g = 2, the pro-
cedure is exactly that explained on p. 38 and shown in sections (9), (10),
(11), and (12) of table 9. (2) If &3, the procedure of sections (9.1),
(10.1), (11.1), and (12.1) should be used. The computations and explanations
vhich follow are in terms of equation (2.1), where g = 2, as the method is
applicable for any number of elements in y* greater than one. 17/ However,
if g = 2, the method shown in sections (9), (10), (11), and (12) of teble 9
is computationally more efficient and hence should be used. The present
example 18 given only as a simplified case for illustrative purposes.

-1In sections (9.1), and (10.1) of table 12, compute A', the transpose of A
= By#y#Wy#y%, using another variation of the Doolittle method. The forward
solution is carried out in section (9.1) and a back solution in section (10.1).
Explanation is as follows: In the upper section of the forward Doolittle
solution, write end Wywy*, obtained from sections (8) and (3), respec-

" tively. Note that ey is written out in full. Compute also a £ column,
composed of row sums, including those terms in B which are omitted because of
symmetry. The encircled numbers are used for illustrative purposes in the out-
line of the computation of A' and its check. Carry out the forward Doolittle
solution in rows 1 - 2" as explained on p. 9. Note that only one Z column
is used to check the computation of the entire row. In section (10.1), the
computation of A' is in the form of a back solution. This involyes & square
matrix of order g. The outline showing the computation of the aij, the ele-
ments of A', is self-explanatory. The subscripts of the aij refer to the rows
and columns of A'; they have no reference to the subscripts of the y's. The

g/ When there is only one element in y*, we have an ordinary multiple re-
gression equation which can be handled by the least squares method ex;glained
in detail in the first part of this handbook, or by the methods described
on pp. T0-75.
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Table 12.- Computations involved in obtaining sections (9.1) and (10.1)

for an overidentified equation for which g=2 1/

Section (9.1) - Forward solution

, Byays : Hyeys
Row : :
. Yo n Yo : N z
y2 :  0.6688 0.7689 0.3183 0.2550 2.0112
1 : .9858 .2550 1.0930 3.1028
(1) : 0.6688 0.7689 0.3183  0.2550 2.0112
(1" : 1. 1.1496(D  A4759@ .3812() 3.0069(DV
(2) : .9858 .2550 1.0930 3.1028
(1)(-1.1496): -.8840 -.3660 -.2931 -2.3122
(2") : L1017 -.1110 7998 .71905 v
(2m) 1. -1.0912(5) 7.8617®  7.TT0M(TV
Section (10.1) - Back solution
Computation of A' Outline
a'11 a'y2
o.h’{zg -1.0912 ® ®=a'yp
1.25 a'yo(-
1.7305 ——,sﬁ@l
a"gl al
.3812 7.8617 =g
"2002% 5'22®‘ @ 8 22
: -8.6573 a'
; a'z a.'za
: g.oo%g T.T704 v @ @.___ a'so
s 8'z2(-@)
. &' m
: Check
aliptalpn+l=al
8»'11 + 3'21 +1-= a'zl

1/ These computations wer
only 4 appear in the tsbile.
to be slightly in error.
fied example is shown for

This method is used only when g>3.
burposes of illustration. -

e performed with 9 decimal places, of which

Therefore some of the computations may appear

This simpli-
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check on the computation of A' also is self-explanatory. These computations
can be easlly extended for any number of elements in y*. (See appendix,
p. 92.)

In section (11.1) we estimate A by an iterative method. 18/ Computations
are shown in teble 13. The explanation is as follows: Write A', computed in
section (10.1). Next to it write the vector q(0), which is a column of 1's.
a(0) has as many 1's as the mumber of rows in A'. Beneath 1t write Q?l) whose
elements, Q}l), are obtained in the follo&yg manner: Q1) equals the sum of
the elements of the first column of A', Q3~/ equals the sum of the elements of
the second colum of A'. In general, therefore, the ith element of Q(l) ig
cbtained by summing the ith column of A'. These sums (plus 1) were computed
in the check on the computations of A'. For our example )

Q§1) = (1.7305) + (-8.6573) = -6.9267
Q.,Sl) = (-1.0912) + (7.861T) = 6.770k

Teble 13.- Computations involved in obtaining section (11.1)
for an overidentified equation 1/

Successive iterations

d© @) g g3 g P (5 (8
. -1. . . 1. 1. 1. 1. 1.
-61322% %gg}? g.- -]-.9771& -.8609 -.8558 -.8555 -.8555 -.8555

Q1) P @ P g3) P g8 P g5) I q8) P (D

-6.9267 10.1926 9.1843 9.1395 9.1373 9.1372 9.1372
6.T704 -8.7756 -7.8600 -7.8193 -7.8173 -T7.8172 -7.8172

1/ These computations were performed with 9 decimal places, of which only i
eppear in the table. Because of this some of the computations mey appear to be
slightly in error.

1
(1), tne e%afents of q(1), are obtained by dividing each of the Qi ) by
the eldment of Q 1 haviﬁ the largest absolute value. In the present exa-xgpl;é
the largest element of Q ) is -6.9267. qil), therefore, equals -6.9267/-6.9267

18/ This method differs from that discussed by Chernoff and Divinsky (2,
P. 244) and Klein (13, p. 183).
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2) b-
=1. g{l) = 6.7704/-6.9267 = =0.9TFk qa), theelementsofq( , are O
ta:JL.r’aed in the leéwing menner: & 2 eqtsia.ls the sum of tlei)pro?gszts of the
elements of the first column of A' with the elements of q‘\~/; Q equals the
sun of the ucts of the elements of the second column of (%5 with the ele-
ments of qu‘. In general, therefore, the ith element of Q ?. uals the sum
of the products of the ith column of A' with the elements of q\+/. In our

example,
of® = (1.7305) (1) + (-8.6573) (-0.977h) = 10.1926
Qf®) = (-1.0912) (1) + (7.8617) (-0.977h) = -8.7756

qie), the e% ents of q(e), are obtained by dividing each of the Q(z) by
the el t of Q g? having the larg s§ absolute value. In our example ere-
fore, q 2? = %o 1926/10.1926 = 1; E§2 = -8.7756/10.1926 = -9.8609. gé , the
elements of Q 35 , are obtained in the following manner: @ 3 equals e sum
of t?e projucts of the 2lements of the first column of A' with the elements
of q(2); %3 equals the sum of the groducts of the elements of the second
colum of A' with the elements of q(2); and in general, Q{3) equals the sum
of the products of the ith column of A' with the elements of q 2), 1In our
example,

(1.7305) (1) + (-8.6573) (-0.8609) = 9.1843
(-1.0912) (1) + (7.8617) (-0.8609) = -7.8600

Q§3)

o3

Continu? gn this manner, that is, q{k) = Qik) /Qék) where st) is the
element in Q(K) having the largest absolute value; an k+1) equals the sum
of the products of the ith col £ A b¥ the o(k), un€il the elements in the
successive Q vectors, that is, Q%: and Q{k+1) q’agree to the number of required
decimal places. Six iterations Were required for accuracy to 4 decimals as
shown in table 13; nine iterations were needed for the required agreement of
nine decimal places when the full computations were carried out. 19/ The
largest element of the final computed Q vector, that is, Qg in teble 13, is
the estimate of A+« The only check on the computations needed is that of re-
computing the final Q and q vectors; all other checks are unnecessary owing

to the nature of the iterative process. The reader will note that, except

for a rounding error due to dropping decimals, the estimate for A obtained in
teble 13 is the same as that shown in section (9), tsble 9.

In section (12.1) we estimate b', the vector of the coefficients of the
endogenous variables. b' is obtained from the final q vector, computed in
section (11.1), in the following manner: If the first element of the final g
vector equals 1, b' is this final q vector; if the first element of the final
q vector does not equal 1, b' is obtained by dividing each element of the

_:_L_g/ Some authors recammend raising the matrix to the eighth power before
beginning the iterations. When this was tried on this example » ‘the number of
necessary iterations was reduced to three. But the additionsl work involved

in raising the matrix to a higher power, which requires use of a "floating"
decimal point on desk calculators, outweighs the advantages. |
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Tinal q vector by its first element. For example s 1f the elements of the
final q vector were 0.2 and 0.4, the elements of b' would be 1.0 and 2.0
respectively. In our case, the first element of the final q vector, q(6 R
equals 1 and the second element equals -0.8555. These results are the same
as those shown in section (12) of table 9. If there are more than two ele-

ments in b', compute the sum of all the elements in the vector and enter that
sum in a I' row. This sum is used later.

Sections (9)-(12):For Just Identified Equations.--(1) If g=2, the procedure
is that explai nea'2 jc,"n"')'p."h'3' “end shown in sections (9.2), (10.2), (11.2), and
(12.2) of table 10.. ,

(2) If g=3, sections (9.2a) and (9.2b) are used to invert the matrix
11B, which is required for section (9.2). 13B is a symmetrical matrix obtained

by omitting the first row and first column of » computed in section (8).
A colum, Z, is obtained for ;3B by subtracting the first element in each row
other than the first of from = of By#y*. That the sum across the rows

of 11B is identical with the figure appearing in the Z column of 131B is indi-
cated by a check mark. When y* has 3 elements, 11B is a 2x2 matrix. The
method used to invert a matrix of order 2, including the check, is explained
on p. 26, and shown in sections (4a) and (4b) of tsble 10. Sections (9.2a)
and (9.2b) are analagous to sections (4a) and (Ub), respectively, M x,x being
replaced by 11B. 11B-l, including the missing elements, is then entered in

section (9.2). A row, I', consisting of column sums, should be computed; this
enters into later computations.

In section (10.2) write By, the first colum of By#y* with its first ele-
ment omitted. Before obtaining B, the missing elements in By#y* must be
filled in, at least mentally. When g=3, Bj is a column vector consisting of
two rows. An additional row, Z', is obtained by subtracting the element in
the first row and first column of from the item in the first row and I
colum of . That the sum of the items in By is identical with the cor-
responding value in the I' row is indicated by a check mark. This provides a
check on the copying. X', however, i1s not used in later computations.

In section (11.2) compute 1b', which is b', the column vector of the
coefficients of the endogenous variables, with its first element omitted. The
ith element of ;b' is obtained by cumulating the product of the elements of
the ith row of -[11B]~1l, excluding I but including X', with the elements of
B}, excluding Z'. That the sum of the elements of jb' is identical (except
for possible rounding error) with the element in the ' row of jb' is indi-
cated by a check mark. Computationwise, it is easier to neglect the minus
sign prefixed to 11B-l. Instead, multiply 13B-1, including ', by By, ex-
cluding Z'; change the sign of the result, 1b', including Z'; and perform the
check in the manner indicated previously.

In section (12.2) b' is obtained from 1b' by inserting the omitted ele-
ment, by, which equals 1 by definition. b' is a column vector having 3 rows
vhen y* has 3 elements. An additional row, I', is obtailned by adding 1 to the
element in the ¥' row of ib'. That the sum of the elements in b' is identical
vith the element in the ' row of b' is indicated by a check mark. This
checks the copying.
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(3) If g4, a variation of the Doolittle method is used to invert 11B,
vhich is required for section (9.2), and this is considered as section (9.2¢).
For an explanation of the computations involved, as well as the check on this
operation, see p. 26. This computation is best carried out on a separate
worksheet and the result, llB'l, including the missing elements, entered into
section (9.2). An additional row, Z', consisting of column sums should be
camputed. 11B and its inverse are symmetrical matrices of order g-l. In
sections (10.2), (11.2) and (12.2), the computations are the same as those
just given for the case where g=3. Bj (section 10.2) and 1b' (section 11.2)
are colum vectors with g-1 rows, in addition to & Z' row. b' (section 12.2)
is a column vector with g rows, in addition to a Z' row.

With section (13), see table 11, the computations are appliceble regard-
less of the degree of identification of the equation.

Section glgtzc‘.--'l'his is obtained by multiplying ~P', obtained in section
(6), by b', obtained in section (12) for an overidentified equation where g=2,
section (12.1) for an overidentified equation where g23, or section (12.2) for
a Just identified equation. The ith element of c¢' is obtained by cumuleting
the product of the elements of the ith row of -P', excluding Z but including
Z', with the elements of b', excluding Z'. That the sum of the elements of c'
is identical (except for possible rounding error) with the element in the X'
row of ¢' is indicated by a check mark. c¢' is a column vector with h rows in
addition to a I' row. Computetionwise, it is easier to neglect the minus sign
prefixed to P'. Instead, multiply P', including Z' and excluding Z, by b'
excluding Z'; change the sign of the resulting c¢', including Z', and perform
the check. This procedure is used when P' has a I' row, that is, when h22.
If however, h = 1, as in table 9, c¢' is a scalar and the check is one of
recomputation.

Beginning with section (14) computations are started for the standard
errors of the coefficients just obtained.

Section (14):b.--This row vector with g columns is cbtained by transpos-
ing the column vector b', obtained in section (12) for an overidentified
equation where g=2; section (12.1) for an overidentified equation where g23;
or section (12.2) for just identified equations regardless of the number of
elements in y*. When g23, the element in the £' row of b' becomes the element
in the I colum of b. That the sum of the elements of the transposed vector
is identical with the element in the I columm of b is indicated by a check
mark. This checks the transposition.

Section (15):Wyy.--This matrix was computed in section (3). (See p. 37.)
It is copied into section (15). The missing elements are included in the
copied version. The usual check on copylng should be used.

. Section (16):bw -=-This computation is explained on page L5. bWyrey*
is a Tow vector bhaving g columns in addition to a X column.

Section (17):bWy*y%b'.--This scalar is obtained by cumulating the prod-
ucts of the ith element of bWyy*, excluding & (obtained in section (16)), with
the ith element of b, excluding £ (obtained in section (14)). Note that bWywy
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and b are always row vectors and that bWy b' is always a scalar. As with
all scalars, the check 1s one of recomputation.

Sections (18) - (23):For Overidentified Equations Only.--In section (18)
we obtain lﬂg'bwy*y*)'bwy*y*}by omitting the first row and first column of
(bwy*y-*) 'bwy-x-y—x-, a symmetrical matrix of order g. Its ijth element is obtained
by multiplying the ith element of bWy%y* with the jth element of bWyky%. We
do not, however, compute the entire matrix, ('bwy-x-y*) "DWy*y*, but only that
part in which we are interested, that is, all rows and columns other than the
first. For example, if y* had four elements, and we denote the elements of
(bWy*y*) "oWy#y+ &s by j, we would not compute b1l, b12, b13, or bik. We would
not compute b21, b31, or b4l in any event, as it is symmetrical. This com-
putation and 1ts check are explained on pege 45 for the case where g = 2.

Note that the I column of bWy¥y* is not used in these computations. When
g, an additional sum, 4%, is computed for bWyxy*. Since Z is the sum of all
the elements of bWy¥y*, I is equal to Z minus the first element of bWywy*.
The element in the ith row and Z column of n{(bwy*yl.)'bwy*y*}is obtained

by multiplying the ith element of bWy¥y* by 3Z. That the sums across

the rows of lﬁ(m"y*y*)'bwy*y*} are identical (except for possible rounding
errors) with the items in the I column of the respective rows is indicated by
check marks. This checks the computation.

See teble 9 and p. 45 for computations involved in section (19). Except
for A, which is obtained in section (9) when g = 2 and in section (11.1) (see
P. 555 when g23, the computations are the same regardless of the number of
e’ements in y¥.

In section (20), we obtain 711G by multiplying l]{(bwy*y*)'bwy.y*}
oy T:T_PT" 11{(bw3*3*) "OWyxye} 4 the symmetricel matrix of order g-1

D
obtained in section (18). T exb' 15 & scalar obtained in sectlon (19).
For an explanation of scalar tiplication and its check, see p. ol G is

e symmetrical matrix of order g-1 with an additional £ column (when 323 .

In section (21) we obtain 131B, a symmetrical matrix, by omitting the
first row and first colum of , computed in section (8). A colum, Z,
is obtained for 11B (when g23) y subtracting the first element in each row,
other than the first, fram I of Byxy%. That the sums across the rows of 131B
are identical with the elements in the £ column of the respective rows of
11B is indicated by check marks.

In section (22) we obtein 11H, a symmetrical matrix, by subtracting 116G,
computed in section (20), from 11B, computed in section (21). Lg.ke 11G and
11B, 11H is of order g-1 and has an additional Z column (when g 2 3).

In section (23) we obtain Fpp. This matrix is the inverse of )1H, com-
puted in section (22). If g = 2, 13H is & scalar, and its inverse is obtained
by teking the reciprocel of that number. (See p. 26 and table 9.) If g = 3,
sections (23a) and (23b) are used to invert the 2x2 matrix, 11H, required for
section (23). The method used to invert a 2x2 matrix and its check is explained
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on p. 26, and shown in sections (lka) and ?&b; of table 10. Sections (23a) and
(23b) are analogous to_sections (ka) end (¥b), respectively, when Mgz is

-1 red into section (23). If g 2 4, a vari-
replaced by jjH. 313H™ is then ente
ation of the Doolittle method is used to invert j3H, which is required for
section (23). This is done in section (23c). For an explanation of the com-
putations involved and the check, see p. 26, This computation is best carried
out on a separate worksheet, and the result, 11H-1 end, Z, the column of row
sums, entered into section (23). Note that 11H-1, or Fpp, is a symmetrical
matrix of order g-1, when g 2 3. The missing elements should be shown in
section (23).

Sections 112.2! and 123.2[:For Just Identified Equations Only.--For a
Just identified equation there is no section (I comparable to that for an
overidentified equation.

In section (19.2) we compute C¥ = bWy#y¥d' /N'. N' equals the number of
observations minus the total number of variables in the equation. bwy*y*b' is
the scalar obtained in section (17).

Computations comparable to those of sections (20) - (22) for an over-
identified equation are not obtained for a just identified equation.

In section (23.2) we obtain Fyp by taking the inverse of 13B, that is,
the matrix obtained by omitting the first row and first columm of By*y-l-,
obtained in section (8). This computation was performed in section (9.2).

We therefore copy section (9.2), including the Z column which is obtained
when g = 3 or g 2 4, into section (23.2). Any missing elements should be in-
cluded in the copied version.

With section (24) (see table 11) the computations are applicsble regard-
less of the degree of identification of the equation.

Section (24):01P'.-=This nonsymmetrical matrix is obtained by eliminating
the fIrst column of P', computed previously in section (6), and copying the
remaining columms, except the I column, into section (24). When h 2 2, the
elements of the §' row of P' are also copied into section (24). That the sums
of the elements in the copied columns of ;P' are identical with the elements
in the respective columns of the I' row is indicated by check marks. 8

checks the copying. (3P' has h rows, in addition to a X' row (when h 2 2),
and g-1 columms.

Section (25):F'pc.--This matrix is obtained by multiplying 01P', includ-
ing g7, DY Fbb, excluding Z. This is a nonsymmetrical matrix, so all elements
must be computed. That the sums of the elements of the colums of F'pe are
identical (except for possible rounding errors) with the elements in the
respective columns of the ' row of F'ye, is indicated by check marks. F've
has h rows, in addition to ', and g-1 columns. This procedure holds only
vhen o1P' has a 3' row, that is, when h 2 2. If, however, h = 1 end g = 2,
as in table 9, 1P', Fyp and their product F'pe, are scalars and the check is

one of recomputation. On the other hand, if h = 1 and g 2 3, 01P' is a row

vector and Fyp,, a symmetrical matrix of order 8 - 1. F'pe is obtained by
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multiplying o1P' by Fpp, including Z. That the sum of the elements of the

resulting row vector, F'pc, 1s identical (except for possible rounding error)
with the elements in the £ column of F'pe is indicated by check marks. F'pe
is then a row vector with g - 1 colums in addition to & £ column.

Many analysts will have an interest only in the stendard error (the
square root of the variance) of each coefficient. They will not wish to have
the covariance terms computed. If only the standard errors (or variances) of
the coefficients are desired, only the diagonal elements of each matrix need
be computed starting with U in section (26).

Section (26): U.--The 1jth element of this matrix is obtained by summing
the products of the elements of the ith row of o1P', excluding Z', with the
elements of the jth row of F'pe, including Z'. Note that row-by-row mltipli-
cation is used here.” That the sums across the rows of U are identical (except
for possible rounding errors) with the elements in the respective rows of the
Z colum of U is indicated by check marks. U is a symmetrical matrix of order
h with an additional £ column. This procedure holds only when h 2 2. If,
however, h = 1 and g = 2, as in table 9, o1P', F'pe and their product U sre
scalars, and the check is one of recomputation. On the other hand, if h = 1
and g 2 3, U is the scalar obtained by cumulating the products of the ith
element of the row vector g1P' with the ith element of the row vector F'ype,
excluding Z. The check is one of recomputation.

Section (27): M;%z*.--'l‘his matrix, including the £ columm, which was
obtained in section (&), is copied into section (27). If the covariances are
not desired, only the diagonal elements need be copied. The ususl check on
the copying of matrices should be performed.

Section (28): Fee.~--This matrix is obtained by adding U and M;%z*, as

explaIned on p. 6. 1t is a symmetrical matrix of order h, with an additional
Z column.

Section (29): C¥Fpp.--This matrix is cbtained by multiplying Fpp, computed
in sections (23) and (23.2), by C*, computed in sections (19) and (19.2), for
overidentified and just identified equations, respectively. Since C¥ is a
scalar, each element of Fpp, including those in the Z column, is multiplied by -
C*. That the sums across the rows of C¥fpp are identical (except for possible
rounding errors) with the elements in the respective rows of the £ column of
C*¥Fyp is indicated by check marks. Like Fpp, C¥Fpb is a.symmetrical matrix of
order g-1, and will be of the form

IR I I S T
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The variance of bji, the coefficient on y}, (the ith element in the y* vector)
is the element in the yI row and yi column of C*F,. Note there is no row or
column corresponding to y?{, since the variance of by equals zero. The non-
diagonal elements of C¥Fyp are the covariance terms for the coefficiegts on
the endogenous variables, the b's. For example, the element in the y3 row
and yﬁ' colum of C*¥Fpp, is the covariance bgb), where by and b) are the coef-

ficients on y'g and yﬁ, respectively.

If only the variances are desired, only the diagonal elements of C¥Fyp
need be computed.

Section (30): C¥F.,.--This matrix is obtained by multiplying Foc by C*.
This computation 15 analogous to that explained in section (29), p. 61, with
Fyp replaced by Fee. The veriance of cj, the coefficient on zi, (the ith
element in the z¥* vector) is the element in the z}f row and z'f column of C¥Fee.
Like Foo, C¥Foc is a symmetrical matrix of order h. The nondiagonal elements
of C¥Foc are the covariance terms for the coefficients on the predetermined
variebles, the c's. For example, the element in the zg row and z"3(' column of
C*¥Feoe is the covariance 235 vwhere ¢y and c3 are the coefficients on z; and
and zg, respectively. '

If covariance terms for the b's with the ¢'s are desired, a matrix
c*(—Fbc) can be obtained by multiplying ~Fpe (the negative of the transpose of
Fpc» computed in section (25)) by C*. This is a nonsymmetrical matrix with

€-1 rows and h colums. The element in the y?_ rov and zg column of C¥*( ‘Fbc)

is the covariance bicj, where bj and cj are the coefficients on y}"_ and zj',
respectively.

The final step is to deadjust the coefficients and their standard errors
and rewrite the equation in its original form, that is, in terms of one endo-

genous varisble set equal to a linear combination of the other variables.
This is described on p. 48.

Equations Having No z*'s.--For the special case in which z* has no ele-
ments, that is, h = O, the method outlined in teble 11 is followed with these
changes: (a) Do not use sections (), (5), (6) and (7); (b) section (8) is

};lamg)s:z;xg z(a.;ogfctiai_(l); and (c) do not use sections (24), (25), (26), (27),
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Procedures for Handling Complex Systems

In all systems of equations discussed in detail so far, each co
relates to a varieble composed of a single item. Frequentls,r, the co:gigizg:s
in the structural equations relate to a composite variable that consists of an
a.rithrpetic sum of several endogenous or predetermined varisables. Slight modi-
fications are required when this is so. Other modifications may be needed when
some of the equations can be fitted by least squares » but others are to be fit-
ted by the limited information approach. Still further modifications are
required when the system involves equations that are nonlinear in the varisbles.
Methods of handling problems of this sort are discussed in detail in connection
with the 3 examples included in this section.

A 6-equation Model of the Wheat Economy.--This example is taken fram
Meinken (16). This system of equations is designed to give simultaneously-
determined estimates of prices in domestic and world outlets and the quantity
of wheat utilized domestically in each of the following price-determined outlets:
Use for food, feed, export, and end-of-year stocks. Total demand for use in
these outlets plus that used for seed and industrial purposes must add to the
total domestic supply at the beginning of the marketing year. The economic
reasoning behind the equations used, and results from the statistical fitting,
are discussed in detail in Meinken's bulletin. Aspects discussed here are
those which require a different computational procedure from the systems of
equations covered in previous sections.

The following variables are assumed to have been simultaneously determined
by a cammon set of economic forces during the years included in the anelysis.
Thus, they are the endogenous varisbles in the structural equations.

P,; - Wholesale price of wheat at Liverpool, England, per bushel, converted
to United States currency at par, cents; or P;, - Wholesale price of wheat at
Liverpool per bushel, converted to United States currency at current rate of
exchange, cents.

Pg - Wholesale price of No. 2 Hard Red Winter wheat at Kansas City per
bushel, cents.

Ce - Domestic use of wheat for feed, million bushels.

C - Domestic net exports and shipments to United States Territories of
wheat gnd flour on a wheat equivalent basis, million bushels.

Cg - Domestic end-of-year stocks of wheat, million bushels.

C, - Domestic use of wheat and wheat products for food by civilians,
million bushels.

i the values of 1 or
The following variables are believed to have :.Lnfluenced
more of the endogenous veriables during the years included in the study but lr:o:-
to have been influenced by them to a significant degree during eny glven mazi(ems
ing year. Thus they are the predetermined variables in the structural equa .
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Sy - World production of wheat plus stocks about August 1, excluding
Russia end China but including net exports from Russia, million bushels.

I, - Index of wholesale prices of 45 raw meterials in England (1910-1k4
= 100) .

Sq - Damestic production plus stocks on July 1 of wheat minus use for
seed and industrial purposes, million bushels.

P, - Wholesale price of No. 3 Yellow corn at Chicago, July-December, per
60-pound bushel, cents.

A - Poultry units fed on farms during the year beginning October, mil-
lions.

N - Ocean freight rates from GUlf ports to Liverpool plus the United
Kingdom teriff on wheat fram this country minus the average export subsidy
paid by our govermment per bushel, cents.

Iz - Wholesale price of all camnmodities in this country as computed by
the Bureau of Labor Statistics (1926 = 100).

F - Indications regarding the domestic winter wheat crop for the fol-
lowing year on December 1 as made by the Crop Reporting Board (planted
acreage times condition).

I - Totsl population on Januery 1, millions.

Q - Average processing tax on wheat per bushel, cents.
M - Wage rates of all factory workers per hour, cents.
D - Consumers' disposable income, billion dollars.

T - Time (1921 = 1).

Symbolic letters should be used in connection with these "structural"
verisbles, as the endogenous (Y;) and predetermined (Zy) variables used in
fitting usually differ from those that appear in the structural equations.

Systems of equations may be fitted for at least 2 alternative reasons:
(1) To determine certain structural coefficients, such as coefficients of elas-
ticity, that are statistically consistent, or (2) to obtain simultaneous esti-
mates of the several endogenous variables. If, in the example being consid-
ered in this section, the analyst were interested only in the elasticity of
demand with respect to price for use of wheat as feed, only a single equation
would need to be fitted. This would be fitted by the limited information
approach, since the equation contains 2 endogenous variables. If the price
of wheat were determined by a support program, the fitted equation could be
used to estimate probable use of wheat for feed in future years. On the other
hand, if simultaneous estimates of all of the endogenous variables in future
years are desired, the number of equations used in fitting should equal the
number of endogenous variasbles in the system.
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Sometimes considerable algebraic manipulation is needed
equation:? to this number. This manipulation usually involvest:?nclz‘gg;gsa:?zg
certa.irix n..dentities into the other equations. This should be done before
determining the particular relations that are to be fitted by stetistical
means. _If in the course of the algebraic manipulation certain structural
coe{‘ficlents are modified, these always cen be derived algebraically from the
coefficients of the fitted equations once the statistical enalysis is complete
For the wheat model, the system as originally written included 6 equations as )
required for the 6 endogenous variables. The following equa’cions. are involved
The numbers are the same as in Meinken's bulletin 20/. ’

T =83+ b3(Pg +Q) + b32g + b33T + byyM (3.2)
Ce =8y + by;(Py - P.) + byoA (1)
Ce = a5 + b5 (P - Pg - N) (5)
Cs = 86 + De1(rD) + beaF (6)
Sq = Cp + Cg + Cq + Cg (7)
P, =ag + b81sw + ‘D&;_.IW (8)

Equation (8) cen be fitted directly by least squares as it contains only
a single endogenous varisble. But S.. and I, should be included as predetermined
variables in the system. P rather ¥han Py is included in the set of equations
to be fitted by the limited information approach 21/ (see equation (5)), but
P! = kPw. Hence, S, and I, each were multiplied By k to make them consistent
w¥th the variables used in the other equations.

Equation (7) need not be fitted as it involves no statistical coefficients.
Hence, we have L equations, namely (3.1), (4), (5) and (6), to be fitted directly
by the limited information method.

The predetermined variables for the entire system are obtained by picking
out each predetermined variable included in any one of the structural equations.

For this model, these are: L, Q, D/L, T, M, P_, A, N, I3, F, Sg, kS, and KI,.

20/ In equation (6) as given by Meinken (16), Pgq/Ig is multiplied by 100.
As this makes for a cumbersome notation, this constant is omitted in the equa-

tions as used in this handbook.

21/ If the disturbance in equation (8) is assumed to be independent of those
in the other structural equations, then a least squares fit for this equation
is equivalent to that obtained by the full information approach (see p. 28).
If the disturbance is not assumed to be independent of those in -the other.egza-
tions, then a least squares fit is equivalent to that obtained by the limited
information approach. Independence among the several disturbences in the "
structural equations normelly is not assumed in the limited information approach.
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Since D does not appear separately in any equationm, D/L can be used as a
single veriable. The 13 predetermined variables ordinarily would be desig-
nated as 23, Zp, ... 213, respectively, and would be used to form the Mzg
matrix of order 13. For this analysis, however, the variable T wes

not included in M,, because this time trend is known to represent in only
an imprecise way the true verisbles that cause the downward trend over time
in the demsnd for wheat for use in food products. Thus M,, became a matrix
of order 12. To give determinate results, at least two more observations
than the number of veriables included in M,, should be aveilable gg/ .

The endogenous variables to be used in fitting are obtained by using
each combination of variables that includes at least one endogenous variable.
In this connection, we are interested only in those endogenous variables
that are included in equations to be fitted directly by the limited informa-
tion approach. Hence, Py is omitted. For this model, the endogenous
varisbles used in fitting are: Cp/L, Pa+#Q, Cf, Pa-Pcs Ce, P'y-Pa-N, Cs, and
Pq/Ia. These 8 variables are designated respectively as Yj, Yp, ... Y8.

Two of these Yi appear in each of the I equations to be fitted by the limited
information approach. Chernoff and Rubin (3, pp. 210-212) suggest that the
nonlinear cambinations Ch/L and Pd/Id, as well as the linear combinations,

be treated in this wey. An alternative method of handling the nonlinear com-
binations of variables is discussed on p. 67.

In obtaining the moments, we use a symmetrical matrix of order 12 + 8 = 20,
plus a check sum, meking use of the variables other than T noted in the preced-
ing two paragraphs. Some of the moments obtained are not used, but if only
those moments actually to be used are obtained, with a check sum on each,
more work is required than if the entire operation were to be performed with
a single matrix. Moments that involve T with the other varisbles included
in equation (3.1) (see p. 65) are obtained as a separate operation. (In some
problems, as in the example described on p. 73, it is more efficient to obtain
the moments with T simulteneously with those for the other variables, even
though it is to be omitted from Mgz,.)

The forward Doolittle solution required to obtain My*zld;g)«izy* is next
performed as a composite operation for all of the equations to be fitted by
the limited information approach. The upper section of the forward Doolittle
iolutign, in outline form, is as follows. Note that only a single check sum

s used.

22/ Predetermined variables sometimes are omitted from Mz to save compu-
tational time. Estimates of the coefficients that are statistically consist-
ent still are obtained, provided sufficient predetermined variebles are used
to provide identification, but the estimates are less efficient (in a statis-
tical sense) than if all of the predetermined varisbles in the system are
used. (See Hildreth and Jarrett (12, pp. 69-70).)
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MZZ sz

zl 22 s e 212 yl ya eee y8 2

The items from the last two rows of each section of the M
portion of thi
operation (see p. 32) are transferred to another sheet , with a’¥heck sum followf
ing each pair of y's. The boxheads on this sheet are of the form:

RoVy) ¥ Z ¥3¥, I ¥5¥ I Y7y =

-1
The 4 My*zMzzMz required for the 4 equations are obtained as described on
P. 32. “Use of the several check sums provides a complete check on the operas-
tions. In some problems, it is more efficient to campute the complete ZME:"Mz
matrix as a single operation, but in this example this method would re rezgore
than twice as many cumilative cross-multiplications.

In fitting each of the 4 equations s the following variables are involved:

Eﬂvation _X* _z*
(3.1) Cp/L, Pg+Q D/L, T, M
(%) Css Pg - Pe A
(5) Ces» Py -Pg - N -

(6) Cgs Pa/Ig F

These equations are fitted, meking use of the appropriate Y's and Z's and
the steps given in table 11 for equations having specified numbers of endogenous
and predetermined variables. Each of these equations 1is overidentified. The

matrices, which are of order 2 in each case, and the Mz*y* matrices are
copied from the matrix of adjusted moments. In each equation,"the variable to
the left of the equality sign in the structural equation is designated as y;

in the fitting process.

Nonlinear varisbles.--As noted on p. 66, Chernoff and Rubin (3, pp. 210-212)
suggest treating nonlinear combinations that involve endogenous variables, such
as Gp/L and P3/I3, as though they were each a single varisble. Klein (13, pp.
120-121), on the other hand, suggests use of formulas that transform the non-
linear combinations into linear approximations. These approximations are then
substituted for the originsl verisbles. The authors believe that the Klein

epproach is to be preferred.
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The following formulas are given by Klein in this connection:
XY 2% + XY - XY
Xy « XA + X/ - KADY.

where X and ¥ are the means of X and Y, respectively. If either the product or
the quotient is multiplied by & constant, then each term in the transformation

is multiplied by the constant.

Each of the nonlinear variables in the model for wheat involves a quo-
tient. Hence these variables can be rewritten in the following way:

Ch=Eh+}ch Cp
2+ - 2L
L e

' T

Pa Pa 1 P

— X = +=Pa- —p Iy
I I3 I3 T4

2
In computing M__, the predetermined variables -(Eh[fa)L end -(P43/13)14
are substituted forzf and Id’ respectively. The change from the Mz, useg in
the previous example can be made eesily, as the variables L and Iy are, re-
spectively, merely multiplied by & constant.

For purposes of fitting, the linear combination of endogenous and pre-
determined variables is used in the same way as the quotient in the preceding
example. In using the structursl equations for analytical purposes, however,
it is convenient to rewrite these variables so that the endogenous and pre-
determined variables are separated (see p. 82). This can be done easily by an
algebraic transformation.

Nonlinear equations.--All 6 equations used in the wheat model are stated
in linear form. This is a desirable condition when using computational methods
described in this handbook. gS_/ In some models, the analyst may prefer to
express his equations as linear in logarithms or as some other known function
of the observed variables. This results in a system of equations that are con-
sistent in so far as linearity is concerned so long as none of the equations
are identities like equation (7) in the model for wheat. If identities of this
sort are involved, all other equations must be linear in the actual variables
if consistency smong the several equations is to be maintained. If all the

23/ Chernoff and Rubin (3, pp. 210-212) point out, in effect, that systems of
equations that involve some equations for which the variables are expressed in
logarithms end other equations for which the variasbles are in terms of actual
date can be handled directly by the limited informstion approach by using the
logarithms of the appropriate varisbles in M., in place of the original data.
Estimates of the coefficients obtained in this way are statistically consistent
but probably, under most conditions, are less efficient than if all variables
are either in actusl data or in logarithms.
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equations are expressed as linear in logarithms, and nonlinear c

variables like those discussed in the preceding) section are invgzﬁeisatign :logi-
fication in the computetional procedure is required as the logarithm’of a
prod\.J.ct equals the sum of the logerithms of the factors end the logarithm of a
quotient equals the logarithm of the numerator minus the logarithm of the
denaminator. Thus such combinations easily can be made linear as a part of
the logarithmic transformation.

In connection with the wheat model, & logarithmic relation for equation
(%), which deals with the demend for wheat for feeding, appears to prevail.
However, this can be approximated by a linear relationship except in those
years for which the spread between the price of wheat and corn is negative or
exceeds asbout 4O cents per 60-pound bushel. This price spreed exceeded 40
cents in 3 of the years used in fitting the equations. Use for feed in these
Years was considerably higher than would have been expected if based on a
linear relation due to minimm requirements for wheat in poultry rations. A
scatter diasgram was made of this relationship and & free-hand line drawn. Use
of wheat for feed in these years was read from the line and exports were
increased by the difference between the quantity fed and the quantity indi-
cated for feeding from the line. Thus the date used for fitting were trans-
formed in such a way as to be consistent with a set of linear relations. A
similar adjustment in the reverse direction is required when this relation-
ship is used for analytical purposes. This adjustment is described in detail
in the appendix of Meinken's bulletin.

A 9-equation Model of the Demand for Dairy Products.--Rojko (17) describes
a number of 3-equation models of the demend structure for dairy products, in-
cluding one for the post-World War II years. The following is a natural exten-
sion of his post-World War II model. As each regression coefficient relates to
only a single variable, the variables are written down directly as Y's (endoge-
nous) and Z's (predetermined). In the following listing, only enough informa-
tion regarding the variables is given to indicate in a general way their
econamic meaning.

The following variables are involved in the model:

Yy - Quantity of milk used for fluid milk and cream
Yo - Price of fluid milk and cream

Y3 - Quantity of milk used for butter

Y} - Price of butter

Y5 - Quantity of milk used for American cheese

Y6 - Price of American cheese
- Quantity of milk used for manufactured products other than butter and

American cheese
Price of manufactured products other than butter end American cheese

Y9 - Quantity of margarine produced or sold
Disposable consumer inccome
Zo - Price of margarine, which is assumed to be de

economy
Z3 - Total quantity of milk available for consumption

Zl, - Price of meat, poultry, and eggs

&
]

N
=
]

termined by the fats and oils
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The following equations are used. In each case, the varidble on the left
is expressed as e linear function of those included in the parenthesis on the
right. To save space, full detail for the equations is omitted.

Y1 = £(Yp, Z) (1)
Y, =20z, %3, Z3) (2)
Y3 = £(Yy, 21, 2 (3)
Y =z, %, 2 (B
Ys = f(Y6’ 2, Zl|.) (5)
Yg = 1(Zy, Zp, Z3 (6)
Yo = £(Yy, Zy, Zp) (9)
2y =Y +¥3+¥5+ ¥y (10)

The econcmic reasoning behind these equations is discussed in detail in the
article by Rojko (17).

This model has 10 equations and 9 endogenous variables. The 10 equations
cen be reduced to 9 by substituting the algebraic velue of any one of the Y's
in equation (10), for example Y, for its value in equation (1). This in no way
affects the equation as these variables are algebraic equivalents. The chief
importance of equation (10) is to remind the enelyst that he cannot express his
other equations as linear in the logarithms of the variables if all equations
are to be consistent with respect to linearity.

In fitting these equations,Z) is omitted from M, for the same reason that
time vas omitted from M,, for the model relating to wheat. That is, Z) is only
an imprecise measure of prices of items that compete with American cheese as
alternative sources of protein.

As each of the equations (2), (4), (6), and (8) involves only a single
endogenous variable, they can be fitted directly by least squares. But as
each involves all of the predetermined variables included in Mj;, much compu-
tational time cen be saved by using the method described in succeeding peara-
graphs. Equation (10) need not be fitted. FEach of the remeining equations is
overidentified; after the camputations described below are completed, they are
handled by the methods outlined in table 1ll.

In obtaining the moments, a symmetrical matrix of order i
- r3+9 =12 is used
plus a check sum. (Moments involving 2l are computed separately.) The forward’
Doolittle solution is ysed to obtain (1) M;i (by making use of an identity
matrix) and (2) My*zMizsz* as a composite operation. The upper section of the

forward Doolittle solution, in outline form, is as f .
ollows.
single over all check sum is used. 4 s. Note that only &

Maz Mzy I

Z1 % %23|V1 Yo --e¥9[ I1 Ip I3] %
1 0 o
0 1 o
0 0 1
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The items from the last two lines in each section of the M, and the I

portions of this operation (see p. 32) are transferred to another’sheet , with
check sums computed in the following way:

z
The 5 .zM'z'.;l. M, % Tequired for the 5 equations to be fitted by the limited
information approach are obtained as described on p. 32. Use of the several
check sums provides a complete check on the operation. Mzz likewise is obtained

in the way described on p. 26. The remaining operations for the overidentified
equations are the same as for any system.

For each of the equations to be fitted by least squares, we first obtain
b' = M;ZM.L . For each equation, sz* is a vector, as only 1 y* is involved.
Since p-l is symmetrical, this multiplication can be carried out either as a
row-by-colum or as a column-by-column product; the column-by-column product
(see p.10l1) may be preferred as a matter of convenience and the checks shown

in the outline given below are designed for a multiplication performed in this
way. The missing elements in M;; should be filled in before performing the mul-
tiplication. The sum of the 3 bj3 in the b' vector should approximately equal
the sum of the products obtained by making use of the check sum column. This
checks the computation. This computation in outline form is as follows:

-1

Mzz sz* b!
2y 2, z3 z vy
2]
22 =
Z
3
2!

The elements of the b' vector are the respective highest-order partial regres-
sion coefficients for the equation that involves yj.

These computations for the 4 equations to be fitted by least squares can
be systematized in the following way:

Mz Moy b
1 1 1 1
Z) Zp 23 E Yo ¥y Y6 V8 bp by bg by
2
Za =
Z3 )
z . -

In this computation, the product M;]Z'sz-x- can be obtained conveniently for :ach
equation in turn. Here the Mzy* and b'j sections each consist of 4 separa :h
column vectors. Each set of computations is the same as that described in the

preceding paragraph.
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The remeining statistical coefficients for these equations ere next ob-
tained, again making use of a composite set of computations. To £i11 in the
first two colums in the following outline, use is made of values obtained in
fitting other equations by the limited information approach. For example,
Myjyj for yp is_the element in the lower right corner of My*y* for equation
(l}, and Myidd‘z'bdzyi for yp is the element in the lower right corner of
MyxMzzMzy* for equation (1). A similar situation holds for y) and the matrices
for equation (3), yg end the matrices for equation (5), and yg and the matrices
for equation (7). N, the number of observations in the sample, and N*, the
pumber of observations minus the number of variables, ere the same for each
equation. For this example, N' = N - 4. The outline below gives the value of
the multiple coefficient of determination and the standard error of estimate
for each equation. A check on the copying of data in the first two columns is
given by computing the items in columm (4) and checking them against the appro-
priate elements of Wyx, for each equation. These should check exactly. The
other items are chec{;rby recomputation.

F() (2) > (3) (¥) (5) (6)
. 22 2

Yy lg’iyi ”sfizM;%MzH By = —&;— RE 17 —%2— ! =\/ 2
: = (1) - (2)

Yo ¢ .

yy

Y6 :

yg

- The standard errors of the regression coefficients for each equation are
obtained by making use of the following outline. The items in column (1) are
obtained by multiplying by N the corresponding items in column (5) of the pre-
ceding outline. If desired, the diagonal elements from M;% can be written
above the box heads so as to be conveniently available in performing these
operations. The diagonal elements from M;% are multiplied, respectively, by
the items in column (1), and the square root of the product is obtained. The
items in column (3) are the standard errors of the highest order partial re-
gression coefficients between y; and 21; the items in column (5) are the

standard errors of the regression coefficients between
The check is one of recomputation. Yy end =g, and so forth.

-1 -1

zu= 222-"— Zgl3'=

W N': -1 : -1 .

i yiyig . 211 x (1) 32% x (1) : zgg' x (1)
Yy = Nes:l Value Square : Value ° Square : Val : Square

(1) : (2) : t‘ogt : root : ue . root
T : : (3) ¢ (4) : (5) : (6) : ()
oo |
Y6 :

¥8
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The regression coefficients and their standard errors and th
e stand
error of estimate must be deadjusted and constant terms obtained for thea::ua-
tions. The procedure for each equation is exactly the same as shown in the

lower section of table 3. When this approach is used, coeffici
ent
determination cannot be obtained conveniently. ’ s of partial

Thg method of obtaining these coefficients from computations used in
connection with fitting equations by the limited information approach is
derived from material given in Hildreth and Jarrett (12 » Pp. 147-151). 1t
should be remembered that this method can be used dire_ctly only when M, is
the same for both sets of equations. 2z

A Partially.Reduced Form Model for Feeds.--The system of equations
described in this section was developed by Gordon King, Agricultural Market-
ing Service, United States Department of Agriculture » to study effects of the
price support program for feed grains on prices and use for feeding of feed
concentrates. As in the preceding example, only enough information regarding
the varisbles is given to indicate in a general way their economic meaning.

The following endogenous varisbles are involved in the model:

rJ
!

Price of feed grains that actually prevailed

g

Ph - Price of high protein feeds

Pf - Price of feed grains that would have prevailed had there been no price
support program for feed grains

Ql - Quantity of feed grains going under loan and remaining under loan at the

end of the marketing period plus grain delivered under purchase agree-
ments

The following predetermined variables are involved in the model:
Qg - Supply of feed grains available for feeding during the marketing period
Qy - Quentity of high protein feeds used for feed

Ps - Support price for corn (In years when no support program was in opera-
tion, this variable wes set at such a level that no grain would normsally

have gone under loan.)
A - Grain-consuming animal units fed during the year
P, - Price of livestock and livestock products
T - Time

In a more complete model, A and P,, and possibly Q), would have been treated
es endogenous variables.
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The following structurel equations are involved. In each case, the varia-
ble on the left is expressed as a linear function of those included in the
parenthesis on the right. To save space, full detail for the equations is

omitted.

Pe = f(Qg: Qns A P]_) (1)
Q) = £(P-Pg) (2)
Pg = f(Qg-Ql, Qp» A, P]_) (3)
Py = f(Qg'Ql) Qn, A, Py, T) (%)

As no data are available for P¢ for years in which a support program was
in operation, the right-hand side of equation (1) is substituted for Ps in equa-
tion (2). The resulting equation, shown here as equation (5), is called a
partially-reduced form equation.

Q]_ = f(Qg, Qh: A, Pl: ‘Ps) (5)

Equations (3), (4), and (5) are used in fitting. The following variables
are used: Y3 = Pg, Yo =QgR1, Y.% =Pp, Y, =Q1, 21 =Qgy, Zp = Qh’azzlé =
-Pgs Z)y =A, 25 =Py, 26 =T. he following tabulation shows the Y* Z*
involved in e equation:

Equation * z*
(3) Yy, Yo Zos Z)y, Zs
(&) 3, Yp Zp, 7y, Z5, Zg
(5) Y), 2y, Zp, 23, 2y, Zs

As equation (5) involves only a single endogenous variable, it can be fit-
ted directly by least squares. As in the preceding example, however, computa-
tional time is saved by handling all computations as a composite unit. The
counting rule does not apply strictly to equations (3) and (L4) because each
contains a composite variable, but if the rule were applied to the equations
when they are expressed in Y's and Z's it would suggest that they are over-
identified, which is correct. In the model described in succeeding paragrephs,
Zg (vwhich represents a time trend) is omitted from M__. In other formulations,
however, Zg might be included in M 52 @s the underly%%g time trend is believed
to be nearly linear over the perioa included in the analysis.

in;etting‘r;p thihfzrwaid Doolittle solution, we corlzlliider three sorts of
computations: ose that relate to obtaining (&) M_x M: x for equations

. -1 <

(3) and (4); (b) Mz for equation (5); and (c) M5} for equations (3) end (4).
As in the preceding exemple, the independent variables in equation (5) are the
seme as the predetermined varisbles in M,, for the system. Also 3 of the pre-
determined varisbles in equations (3) and (4) are identicel. These 3 variables
are listed first in the forward Doolittle solution and then the others that are
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involved in Mzz. All 4 y's are next listed, and then the 5-vari i

- eble identit
matrix. As in the preceding example, a single check sum is used. The upp:eLry
section of the forward Doolittle solution has the following form:

Mzz Mzy I

! 22 z],} 25 2, 2 3 yl Yo Y3 Iy 12 I L I 5 I 1 I 3 ¥
2 1 0 0 0 o

Z

4 0 1 0 0 O

4

5 0 0 1 0 0

1 0 0 0 1 O

%3 0 0 0 0 1

By computing a new check sum for the last two rows of each section of the
forward Doolittle solution, Mg% can be obtained and checked directly from the
I part of the solution. The inverse should be written down on & second sheet,
with space at the right for additional columns. Missing elements from this
symmetrical matrix should be filled in. The vector Mzy) cen be written in an
adjacent column and the highest order b's obtained directly by performing a
colum-by-column multiplication as described on p. Tl. As only & single equa-
tion is to be computed by least squares, R® and s can be computed directly by
use of the formules implied by the teble on p.T2. Myth'%sz),'. can be obtained
b,y cumlating the products from the last two rows of ea.cﬁ section of the y)
column of the forwerd Doolittle solution in the way described on p. 32. Squared
velues of the standard errors of the respective regression coefficients are
obtained by miltiplying the diagonal elements of ML by Ns2. These can be
written down directly in & column next to the b's, and the square roots in-
serted in the next column. Except for deadjusting the coefficients, this com-
pletes the computations for the least squares equation.

Because of the nature of the y's involved in equations (3) and (4), it is
efficient to compute the entire MszZ]z'Mz matrix for yy, Yo, and ¥3e This can
be done by placing a strip of paper over the y), column and computing a new check
sum for y1, y2 and y3 for the last two rows of each section of the forward
Doolittle solution. The triple-product matrix then is obtained and checked as
degscribed on p. 32. At the same time, computations involved in obtaining
M-}}z* for these equations can be completed. This can be done by placing strips
of paper over the forward Doolittle solution in ::;h a vay ;hat i?lumn;ofoz
2y, 2 , I;, and the original Z, rows and sections for 2z
&%é. z3’a¥é’cg%érzgi ylﬁ:a.ta.sé’or z4 should be inserted in place of those originally
shown3for 2, and separate check sums are computed for the z's and the I's that
appear on the modified table. By completing the indicated operations for zg
and the new check sums, information needed to obtain the My, x is given. The
elements of the inverse for equation (3) cen be obtained as a part of the com-

putations involved in obtaining the elements of the inverse for equation (4).

The check on the operation for egquation (4) automatically checks the computa-

tion for equation (3).
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These operations having been completed, the usual computations for an over-

identified equation are carried out for each equation as shown in table 11. If
desired, ;.,](: 4 can be recorded directly in the space provided for step four in
each table. In carrying out the camputations for equation (4), it should be

remembered that the y variables are listed in the order ¥3s Yoo
TESTS TO BE MADE AFTER COMPLETING THE ANALYSIS

Four tests are commonly made by an anslyst after he has run any correle-
tion or regression study. (1) The signs and relative magnitudes of the regres-
sion coefficients are checked to make sure that they are consistent with the
analyst's expectations based on economic theory and knowledge of the field to
which the study relates. (2) The coefficients are campared with their standard
errors to see whether they differ from zero or some other value by a statis-
tically significant emount. (3) The unexplained residuals are enalyzed, per-
haps by plotting them in a time series, to see whether they are essentially
random. (4) If the study is an important one, the analyst makes up charts
that indicate the degree of partial correlation and studies these to learn
how particular observations affect the analysis and to see if the type of
function fitted appears to be consistent with the data. Tests of this sort
as applied to least squares analyses are described briefly by Foote and Fox
(9, pp. 25-36). The analysis also would be checked to see how useful it is
for prediction for observations not included in the study.

The first of these checks is equally important when working with systems
of equations. Before using the system for analytical purposes, the analyst
must make up his mind whether any gross inconsistencies render the results
entirely useless for such purposes. In some situations, he may be content
to replace certain coefficients with others that on a judgment basis appear
more logical. In so doing, however, calculated standard errors for other
coefficients lose their validity. As noted on p.l, t-tests of statistical
coefficients to indicate whether they differ significantly from some assumed
value, normally zero, mey not be valid vwhen the analyst is working with the
kind of time series normally used in economic research; but the ratio of the
estimate to its calculated standard error ordinarily should give a rough idea
of the probable sempling variability of the estimate. A test that indicates
the probability that the unexplained residuals are serially correlated is
described in the following section. This test was designed for use with equa-
tions fitted by least squares but on intuitive grounds it appears to be fairly
epplicable for use with equations fitted by the limited information approach.
Following that, tests are described that indicated whether particular equations
fitted by the limited information approach are, in fact, probably overidenti-
fied or Jjust identified. Graphic studies of the individual equations usually
are not made when we are working with systems of equations. Detailed studies
of the usefulness of the system for projecting trends or analyzing alternative
policy questions represent a partial substitute. Formal tests of significance
of the residuals to check whether the estimated relations fit data outside the
semple period as well as should be expected from their fit during the sample
period are described by Hildreth and Jarrett (12, pp. 119-129). These tests
are not described here; they are only a "crude makeshift" as applied to eque-
tions fitted by the limited information- approach.
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Serial Correlation in the Residuals

Durbin and Wetson (6) developed a method by which the unexpleined residuals
from an equation fitted by least squares can be tested to see if successive
valx.'tes Ea.re correlated. -2_1+/ This sort of correlation is commonly referred to
as "serial" correlation.” Use of the limits shown in table 14 must be regarded
as approximate when this test is applied to residuals fram equations fitted by
the limited information approach or to equations fitted by least squares that

contain & lagged endogenous varisble. But no exact test i
residuals. st is available for such

In using this test, we compute the following statistic:
N

2
z (dg - dg-1)
q' = t=2
N
> df
t=1

where dt is the unexplained residual for observation t. If gaps occur in the
data, the number of observations that enter into the numerator are reduced by
one for each gap. This statistic can be computed for equations fitted by least
squares or for each structural equation in a system of simultaneous equations.

Table 14 is used to obtain upper and lower bounds for the critical values
for a 2-tailed test at a 5-percent probasbility level. N is the number of
observations in the analysis and k' is the number of independent or predeter-
mined variables in the equation. §/ We compute d' and 4 - d' and find the
appropriate value for dj, and dy in the table. The two computed values relate
to the two tails of the sampling distribution, d4' relating to positive serial
correlation and 4-d', to negative serial correlation. If d' or 4-d' is less
than d’L » we assume that the residuals may be serially correlated, either posi-
tively or negatively. If both d' and 4-d' are greater than dy, we assume that
there is no serial correlation. If neither of the computed values is less than
d;,, but one of them lies between 4y, and dy, the test is inconclusive.

2_h/ Klein (13, pp. 89-90) suggests, in this connection, use of a test
developed by Hart and von Neumann (11) in 1942. This test, however, relates
to serial correlation in a variable rather than to serial correlation in the
unexplained residuals as such. The Durbin-Watson test was not published t.mtil
1951. On intuitive grounds, it appears to be preferred as a test for residuals.

25/ This procedure is suggested by Hildreth and Jarrett (_];2_, p. 78) based on
an enalogy between limited information and least squares estimates. Professor
Durbin, in a discussion of & paper by Morgan and Corlett in the Journal of the
Royal Statistical Society, 64:355, suggests instead use for N of the nmnbsr of
observations minus thé number of dependent variables less one. He says, "For
the overidentified case it seems possible to obtain inequalities for the sig-

nificence points'.
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Teble 14.- Significance points of dj and dy
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From Durbin and Watson (g, p. 174).
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Overidentifying Restrictions

Anderson and Rubin (1, p. 56) developed a test designed to determine the
.alidity of assumptions that certain variables do not appear in a particular
equation, given the validity of the remaining specifications regarding the
system. The number of variables in a system that are omitted from a perticular
equation determine the degree of identification; hence this is known as a test
of overidentifying restrictions. As noted by Hildreth and Jarrett (12, p. 79),
in many applications to economics the investigator is likely to have better
grounds for the specification of which variables enter particular equations
than for other aspects of the system, such as, for example, whether the rela-
tions are linear in actual data or in logarithms. In such cases the interpre-
tation of the test is subject to doubt, but it remains true that an extreme
value for the test statistic is an indication of difficulty samewhere in the
statistical specification used. Because of the nature of the test, it is used
only for overidentified equations.

The test is carried out in 2 stages. First we determine vhether it is
reasonable to conclude that the equation is overidentified. We do this
by postulating a null hypothesis that the equation is underidentified
or just ldentified. If this null hypothesis is not rejected, we make a second
test to determine whether it is reasonable to conclude that the equation is just
identified. The first test can be made easily from date computed in the fitting
process; the second test requires a considereble number of additional camputa-
tions whenever the number of y¥* exceeds 2.

First Phase.--To carry out the first phase of the test, we compute the
following:

(2.3026)N log,, (1 + 1/a)

where N is the sample size, and A was comButed in section (9) (see p. 53).
This statistic follows approximately & 7( distribution with H - h-g + 1
degrees of freedom, where H is the total number of predetermined variables in
the system, h is the number of predetermined varisbles in the em:.atio;l, end g
is the number of endogenous variables in the equation. If the computed test
statistic exceeds the critical value associated with the number of degrees of
freedom at the desired probability level, we have reason to gonclude that the
equation is overidentified. Tables of expected values of X vhen the assumed
hypothesis is true are given in most textbooks on statistics and elsewhere.
Probsbilities of 5 percent or 1 percent are those commonly accepted by statis-

ticians.

Second Phase.--If the computed test statistic for the first phase is less
then The critical value, we proceed with the second phase. The value of A
used in the first stage of the test is the largest root of a certain equation;
For the second stage of the test, we need to determine the sec9nd 1a.rge:tirozn
of the same equation. This can be done by transforming the original m? T :d
the way described below end then getting the largest root of the ‘c,ra.nszorgkl <
matrix by the iterative process described on p. 55. However, if g = t.{on
second largest root can be determined by a direct solution of the equat roét
The paragraphs that follow indicete the way in which the second la.rg:: T
is determined for & g of specified size. Absolute velues of the roo

used in each phase.
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(1) g = 2: The second largest root is given directly by the formula

o5k
Ao . P2 -V P2-"P1P3

2P3

where the p's are defined as in step (9) (see p. 38). For equation (2.1) of
the lumber problem, application of this formula gives a value for the second

largest root of 0.4550.

(2) g > 3: Use is made of results obtained by the iterative process
described on p. 55. The example used for illustrative purposes in table 13
is that of equation (2.1) of the lumber problem, for which g = 2. This exam-
ple also will be used in this section, although the reader should note that in
actual practice this approach is used only when g 2 3. Modifications required
for a larger number of y* are obvious.

The first step 1s to examine the last column for q shown in teble 13 to
determine the row in which the 1 occurs. For this example, this is found in
column q 6) and the 1 occurs in the first row. This tells us that in the next
step we make use of the first column of the A' matrix originally used in table
13. Had the 1 appeared in the second row, we would have used the second column
from the A' matrix. This column vector is multiplied by the transpose of the
column vector for q in the last column of table 13. For this example, the
computation is as follows:

1.7305 [1 -0.8555] - 1.7305 -1.4805
-8.6573 -8.6573 7.4066

The resulting product matrix then is subtracted from A' to give V. The
computation is as follows:

1.7305 -1.0912| _ | 1.7305 -1.k805| _ |0 0.3893
-8.6573  7.8617 -8.6573  T.4066 0 4550

A partial check on the computation is given by the fact that a column of zeros
always must be found in V in the column corresponding to the row in which the
1 occurred in the last column of table 13.

We now obtain V' by interchanging rows and columns of V and operate on V'

in table.l3 in exactly the same way as we did on the A' matrix. When g = 2,
only a single iteration is required. The second column for Q is as follows:

[0 . 3893]
1550
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This indicates that the second largest root e

quals 0.4550, which is th
obtained by use of the formula. ’ 5 the same as

To carry out the second phase of the test, we compute the following:
(2.3026)N logio(Ay + Ap - 2)

where N is the sample size, is the largest root found in section (9) and
)\% is the second largest root foundzby the computation described sbove. This
statistic follows approximately a )X “ distribution with H - h - g + 2 degrees
of freedom. If the computed test statistic exceeds the critical value asso-
ciated with the number of degrees of freedom at the desired probebility level
we have reason to conclude that the equation is just identified. If the com-
puted test statistic is less than this value, the test suggests that the equa-
tion is underidentified and little confidence can be placed in the values
obtained for the coefficients.

USE OF SIMULTANEOUS EQUATION MODELS FOR ANALYTICAL PURPOSES

After the coefficients in a complete system of equations have been obtained
by eppropriate statistical means, the analyst will in general wish to use the
system for predicting trends or for other analytical purposes. For this use,
the approach is different from that employed when a single equation is used,
although the same general steps are involved. In this section, we first dis-
cuss an approach that can be used for any system of equations, and then
desceribe some computational shortcuts that frequently can be used. In the
general approach, the n equations in n endogenous variables must be solved for
each period for which an estimate is desired, making use of the coefficients
estimated by the fitting process. In this connection, the reader should
remember that one of the reasons for using & system of simultaneous equations
is to ensure that estimates of the endogenous variables made from the system
are mutually consistent. The 6-equation model for wheat serves as a convenient
example for the general solution even though this approach would not be used in
connection with actual computations (see p. 84). We first consider a general
solution for any system of simultaneous equations.

Solution of Simultaneous Equations

Consider a system of equations of the following form:
bllxl + b12X2 + o0 bln)(n = al
byoXy + boop + ... bopXy = 8

bnlxl +bn2XQ + .o bnnxn = a.n

Since we have n equations in n unknowns, in general a unique solution to this
system of equations will exist.

If B i8 an n by n matrix of the biJ’ X' is a column vector of the Xj, and
A' is a column vector of the a4, this system of equations can be written in the
following matrix notation, BX' = A'. The truth of this is immediately evident
if we consider any element in the product vector.
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We now multiply each side of the matrix equation by B-l. This glves
3-lpx' = 37la
or B A = x

Translating the matrix notation back into terms of ordinary algebra, we have
the following system of equations that can be used to solve for the X's:

-1 -1 -1 _

-1 -1 -1
bzlal + b22a2 + eee bana‘n x2

bn'%_al +b;?2‘a.2 + b];'llla.‘:1 =Xn

For most systems of equations, the b's are given and we wish to determine the
X's associated with a particular set of a's. This can be done easily by making
use of the second system of equations based on the elements of the inverse

matrix.

Use of Reduced Form Equations

Let us rewrite the structural equations for the model for wheat (see p. 65)
as shown below. In doing so, we assume that a value for P, is obteined directly
fram equation (8) in the same way as for any least squares analys:Ls , and that
this is multiplied by the eppropriate value of k to give P' This variable is
then treated in the equations used for enalytical purposes Vas though it were
predetermined.

Ch/L - P3P =83 + b31Q + b3a(D/L) + b3gT + DM = Ag (3.1)
Cs - byiPy = &y - byPe + byph =h ()
Co  +b51Pq = &5 + bgy(Py - N) = Ag (5)
Cs- b61(Pa/Ig) = ag + beoF = Ag (6)
Cp +Cp+Cet Cg = S = A7 (7

The A's equal the sum of the predetermined varigsbles in each equation multiplied
by their approprlate coefficients plus the constant term. In general, the A's
differ in each period.

Since we have 5 equations in 5 unknowns , ordinarily we can solve for the
values of the 5 endogenous variables in any given year by making use of the
inverse of the matrix of coefficients of the endogenous variables and an appro-
priate vector of the A's. The matrix of coefficients of the endogenous varia-
bles equals the following:



/L 0 0 o b3y
O 1 0 0 -by
0 0 1 0 by

0 0O o0 1 'b6l/Id
1 1 1 1 o0 J

This is 2 nonsymmetrical matrix. Methods of inversion for matrices of order
greater than 2 described so far in this handbook apply only to symmetrical
matrices. As shown in the next section, we do not need to obtain the inverse
of this matrix for this example because we can derive the needed formules
directly from the equations themselves. Methods that could be used to invert
this matrix are described in the appendix, p. 98,

This matrix illustrates one objection to the use of nonlinear endogenous
variables in connection with systems of equations. All of the elements of the
matrix are constents except for the coefficients that relate to the 2 nonlinear
variables. If the inverse of the matrix of coefficients had to be used for
this system, a new inverse for each year would be required. Had we used all
linear variables, or the linear approximation for the nonlinear varisbles
described on p. 68, the matrix of coefficients for the (Yinearized) endogenous
veriables would have consisted only of constants, and only a single inversion
would be required. Nonlinear predetermined variables present no problem, as
the A's in any case are recomputed for each year.

Given the inverse of this matrix, each endogenous varisble can be expressed
as a linear function of the A's multiplied by appropriate elements of the in-
verse. If D represents the matrix of coefficients, these equations have the

following form:
-1 -1 -1 -1 -1
Cyp = dllA3 + dyoh), + dl3A5 + d1)Ag  + disAq

d51A3 + d3pA) + d33As + dghAg + azdag

Ce
etec.

In these, each endogenous varisble is in effect expressed as a function of all
of the predetermined varisbles in the system. These are known as the reduced
form equations. They represent a convenient way to express the equations to
readers not acquainted with matrix notation, particularly when the elements of
the inverse are replaced by a set of actual numbers.

A new set of reduced form equations must be algebraically determined vwhen-
ever changes are made in the basic structure of the model, as, for example,
vwhen an endogenous price is replaced by a predetermined one based on a price

support progream.
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_S_:_L__mplified Formulas for the Wheat
and Dairy Models

In the case of both the wheat and dairy models, simple formulas for
simul taneously projecting the endogenous varisbles can be developed directly
from the structural equations as such. In some cases, similar methods can be
used to reduce the size of the matrix of coefficients to be inverted. To
illustrate this point, a modified version of the wheat model is presented in
the last part of this section. Frequently this general approach can be used
in working with the kinds of equations that are common in economic analysis.

We first consider the equations for wheat presented on p. 82, after sub-
stituting the A's for the terms that involve only predetermined variables. If
each term in equation (3.1) is multiplied by L, the following system of equa-
tions is given:

Cn - b31LPy = AsL
Ce - by, Py = A
Ce + b5y Py = &g
Cq - b61(Pa/I3) = Ag
Ch +Cp + Ce + Cg = A7

If each of the first U4 equations is subtracted from the last equation, all of
the endogenous variables except Pq are eliminated. Py then can be expressed
as the following function of I, I3, the A's, and the b's:

A.7 -A3L -Ah - Ax)- -A6
I‘b3l + bll-l - bSl + (b61/1d’

Transposition of the first U4 equations yields the following:

Pd=

Ch = L(b3lPd + A3)

Cr = byi1Pg + AY
Ce = .bSJ.Pd + As
Cg = (b61/Id)Pd + Ag

The way in which these equations are ug .
discussed in detail by Meinken (16). °d 22 applied to actual projections is
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Use of the structural equations in the dairy model for analytical pur-
poses is even simpler. Here we estimate Yp, Y), Y4, and Y§ directly from the
given values of the predetermined variables for the particular year, making
use of equations (2), (), (6), and (8). When these values and those for the
predetermined varisbles are substituted in the remaining structural equations,
values for the remaining Y's are given directly. Equation (10) provides a
partial check on the computations.

In connection with analyses of the effect of alternative support progrems
on prices for wheat and corn, it is useful to modify the structural equations
for wheat to include the price of corn as an endogenous varisble. The way in
vhich the additional equation is derived need not concern us here. This
example, however, provides a useful addition to those discussed in preceding
paragraphs in indicating useful techniques for deriving formulas for projec-
tion. In this example we are concerned with the following structural equations,
where the A's have the same meaning as in the preceding examples:

Ch - b31LPq = A3L
Ce - binFq - b Pe = Ay
Ce + b51Pd = A5
Cs - be1(Pa/Ta) = Ag
Cp +Cp + Co + Cg = A
bg; Ce + P = Ag

When the first, third, and fourth equations are subtracted from the fifth
equation and the terms are rearranged, the following equations are left:

Ce P11 - biaFe = Ay
Ce + (b3yL - bsy + bgy/Tg)Pg = Ag= AgL - A5 - Ag
bg1Ce +P. =Ag

If, for this reduced set of equations, the last equation is multiplied
by -by; and subtracted fram the first equation, the following system is given:

(1 + byybgy )Ce - by Pg = Ay + byjAg
Cf .+ (b3lL - bsl + b6l/1d)Pd = A7 - A3L - A5 - A6

These 2 equations in 2 unknown can be solved easily by direct substitution or
by inversion of the 2 by 2 matrix of coefficients of the endogenous varisbles.
(See p. 26))
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COEFFICIENTS OF CORRELATION FOR SYSTEMS OF EQUATIONS

A number of correlation concepts can be considered in connection with
systems of equations. Two sorts of correlation coefficients might be of
interest: (1) Those that indicate the relative accuracy with which the in-
dividual endogenous varisbles can be estimated and (2) those that indicate
the closeness of fit of the entire system. Methods for estimating each of
these are discussed in this section.

Coefficients that are similar to multiple correlation coefficients or
their squared values, commonly called coefficients of multiple determination,
can be computed for the years included in the study by meking use of the re-
duced form equations. (See p. 82.) For each year included in the analysis,
an estimate of the particular endogenous varieble is obtained and compared
with the actual value for that year. If d equals the difference between
these 2 values, the coefficient of determination for the variable i is given
by:

The N is required in the numerator of the last term because of the use of aug-
mented moments. Considerable computation may be required to obtain coefficients
of this type as, for the wheat model for example, each of the reduced form equa-
tions involves 5 A's or (in effect) 1li predetermined varisbles. For computa-
tional purposes, it might be desirable in some models to write the reduced form
equations in terms of the predetermined variables as such rather than in terms
of the A's. For the wheat model, little would be gained by this procedure.

Measures of this sort, when multiplied by 100, show the percentage of
variation in each endogenous variable explained by all of the predetermined
variables in the system. In this sense, they are comparable to a multiple
coefficient of determination. They probably would not, however, be subject
to the same sampling distribution.

Theil (_]_.2, _2_0) has developed a statistic which he calls the coefficient
of simultaneous correlation, S4. This is analogous to & coefficient of multi-
ple determination, R2, in that it indicates the percentage of variation in
the joint distribution of the endogenous varisbles included in the system ex-
plained by all of the predetermined variebles in the system. 26/ Theil has
shown that it can be consistently estimested from the sample. If in connection
with fitting the equations the entire My,MziM,, matrix was obtained, as for
the lumber problem, this coefficient is” easily obtained in the following way:

26/ This coefficient was called to the authors' attention by Roy Redner of
the Cowles Foundation for Research in Economics. Theil suggests use of a
similar coefficient for each structural equation. This shows the percentage
of variation in the joint distribution of the endogenous varisbles in that
equation explained by the predetermined varisbles in that equation. The

authors of this handbook believe this to be of less intere
alternative coefficients discussed in the text. S than the two



- 87 -

-1
g2 - Mz 2Ny

| My

These 2 determinants always are symmetrical. If of order greater than 3, they
can be evaluated by the Doolittle method as shown in the appendix, p. 89, If
of order £ 3, they can be evaluated by the methods discussed on p. 26. If, as
for the wheat and dairy models, only part of the ZME%MZ matrix was obtained,
the rest of the matrix would need to be computed tO obtain this coefficient.
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APPENDIX

Abbreviated Doolittle Method

The forward solution of a method outlined by Doolittle ( 5) is illustrated
in detail in tables 3 and 8. This scheme for inverting matrices and solving
systems of equations is based upon methods developed earlier by Gauss (10).
This approach, as it is usually explained, applies only to symmetrical matrices.
In this section of the appendix, we apply it only to symmetrical matrices. In
the next section, however, we show how a modification of the same method applies
to the solution of any matrix, whether symmetrical or not.

. Here we outline an abbreviated form of the forward solution of the Doolittle
method. In abbreviated or compact methods we do as much work as possible on the
calculating machine rather than on the worksheet. For example, in the method
outlined here, the sum of two or more products is cumulated on the calculating
machine; only the cumulated sum is copied. This eliminates the recording of
many entries, and the possibility of making mistakes in the copying.

Outline 1 presents, in symbolic form, the abbreviated forward solution for
a matrix of order n. This method is applicable to symmetrical matrices only.
Methods for handling nonsymmetrical matrices are discussed on p. 95.

Evaluation of Determinants.--The abbreviated forward solution can be used
to evaluate determinants. The value of a symmetrical determinant equals the
product of the diagonal "o elements of the abbreviated forward solution. Refer-
ring to outline 1, the value of the determinant of the matrix of order n is

given by: @& %o 0'33 ees % o

Inversion of Matrices.--To invert a symmetrical matrix, & worksheet is set
up in the form:

where A is the matrix of order n to be inverted and I is the unit matrix of or-
der n. An abbreviated forward solution is carried out on this augmented matrix,
and the inverse is obtained by cumulating the products of certain elements fram
the I part of the forward solution as explained on p. 1l.

Table 15 gives the abbreviated form of the camputations involved in obtain-
ing the inverse, or D, matrix shown in table 3. Note that the abbreviated form
contains only the last two rows of each section of the forward solution of
table 3. The abbreviated solution uses only one check column, that is, column'
(11), headed £. As many of the camputations are carried directly in the machine,
it is better practice to campute one check for the entire row of the forward
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Outline 1.- Abbreviated forward solution

Computations

1 %2 B3ty His

32 2 323 o o azn a22
8.33 » o 0 &311 532

. . .

. . .
®an anz

M1 %2 M3 Yp R

1

w
w
.
]
.
w™
e

12 13 Im 1z
%2 %230 %y %
1 L] . o
P23 Bon Paz
3300 2% Y3
1 L] L] [ ]
Bjn 332
a [« 4
nn n
1
Poz
In general:

Instructions
Row
(1) - (n) ZEnter the matrix of order n,

The elements in the £ column
are obtained by summing across the
rovw, including those terms omitted
because of symmetry.

n
That is, aiZ' =j§1aij (1=1‘21000n)

(1) GIJ =31;j (J=1,2.000n.2)

Check: a = Ea.lj(,j=1, 240000)
(i~) Bl,’)= “1.)/“11("’2'"'"2)

Check: Blz= ZBI +1 (J=29000n)

J
(2v) %y By~ 312“13 (J=2,...n,Z)

Check: %y = Z:a.zd (J=2,+40n)
(2%) 523 = 0'2,1 /fl'22 (3=3,..0n,%)

Check: By = 2B, +1 (J=3,4e0n)

23
] = - -
(3') @y = a3y = By oy
(53,00.2,2)

P23 %23

Check: a5 = EG.BJ (J=3,+.en)
(3") 53J= 0.3.’/0,33 (Jzao"‘nlz)
Check: Bag = Ty, + 1 (J=%4,.00n)

(k') Onkf akJ- 511;"‘13‘521:“25" s = sb-l.k W1, 5 (J=k,e.on,Z) Check: “k2=z“k3(-’=k""n)

(%) Byy™ o /oy, (37kt1,...2,%)
Until: (n') @y e

(n%) Bn22 = a'nE /a'nn

Check: B, . = 231:.1 + 1 (j=ktl,..,n)

nj Blnql;l- B211"'2:[ T e T Bn-l,n a’n-l,;!(" =n,Z) Check: %5~ %an
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solution than to make separate checks for each part of the row. The elements

in column (12), headed Ly, are obtained by summing across only the I columns
of the rows. These elemeinits are obtained after the forward solution has been

completed and are used to check the computation of the inverse matrix.

The computation of the inverse, or D, matrix fram the abbreviated forward
solution is the same as that of the full forward solution, as explained on p. 11.
The formuls for dij, the 1jth element of the matrix D of order 5 given on p. 11,
can easily be extended to apply to a matrix of any order.

Computation of the Matrix Product B'A-1B.--The abbreviated forward solution
is also used to obtain the matrix product B'A-1B. In this case, B need not be
symmetrical. In any case, it is written out in full. The worksheet is set up
in the form:

An abbreviated forward solution is carried out on this augmented matrix and
B'A-1B is obtained by cumulating the products of certain elements from the B
part of the forward solution. This computation is analogous to the computation
of the inverse matrix, with matrix B replacing unit matrix I.

Table 16 gives the abbreviated form of the forward solution for the com-
putation where A = My, and B = Mzy shown in table 8. Note that the abbreviated
form makes use of only one check column, X.

Computation of the Matrix Product A-1B.--The matrix product A-1B can be
efficiently computed with an abbreviated forward and back solution. Table 17
gives the gbbreviated forward and back solution for the camputation of the trans-

pose of A"lB, where A = By*{» and B = Wy*y*, which is shown in complete detail
in table 12. Again B is written out in'full.

1 Outline 2 presents, in symbolic form, the computation of the transpose of
A™"B, where A is the symmetrical n x n matrix shown in rows (1) through (n) and
columns (1) through (n), and B is the n x m matrix, which need not be symmetri-
cal, shown in rows (1) through (n) and colummns (n+l) through (m+m). A forward
solution is carried out and the transpose of A-!B is obtained in the form of &
back solution beginning with the last column, that is s Win; continuing to the
next to the last column, Y! -i> and so forth, until the first column, ! is

i,n
obtained. Table 17 illustrhtes the computations for a problem in which' %1=m=2.

If m.= n and B is a unit matrix of order n, this method can be used to

-1
compute A . This method actually gives (A-1)', but since A i
A-l is also symmetrical, and (A-1)'= A-1, ) s symmetrical,
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Table 16.- Abbreviated forward solution for data shown in table 8 Yy

Moz Myy :
Row : H H : ;
: Z : LS %3 : noo Y2 z : i
51) 2 0.5127 0.5017 0.4060 i  0.6138  0.kgko 2.5284
2) 3, .5543 -.0056 : .Lh56 .5048 2.0008
(3) z3 9.3676 : 1.1593 -1.2651 9.6622
1) 0.5127 0.5017 0.4060  :  0.6138 0.4gko 2.5284 1.1078
él") 1. 9785 7918 : 1.1970 <9634 4.93087 2.163&
2! .0633 -h030  : -.1549 .021k -k732s -.1335
(2"3 1. -6.3653 s -2.4481 .3383 -7.4751 -2.1038
3') 6.4807 : -.3132  -1.5200 b.6UTH  -1.8332
3") 1. : -.0483 -.2345 <TLTL/ -.2828
-1
Computation of Mszzszy
Y1 Yo z
n 1.1293 0.6124 1.78177
Y2 .8397 1.4521v
1
My My 7 Mzy* for equation (2.1)
¥y2 1 z
Yo 0.8397 0.612h4 1.ks521/
vy 1.1293 1.74177

y These computations were performed with 9 decimal places of which only 4 appear in the table; therefore )
some of the computations may appear slightly in error.

Table 17.- Abbreviated form for computations shown in table 12 y

Section (9.1) - Forward solution

: Byuys : Wyryr :
Row : : : : : z
: y2 H yl H }'2 H yl :
Yo : 0.6688 0.7689 0.3183 0.2550 2.0112
¥y : .9858 +2550 1.0930 3.1028
1) i 0.6688 0.7689 0.3183 0.2550 2.0112
1") : 1. 1.1496 L4759 .36812 3.0069 v
2') : .1017 -.1110 .7998 7905
2") : 1. -1.0912 7.8617 T.TT04v
Section (10.1) - Back solution for A' = B W
: 1.7305 -1.0912
: -8.6573 7.8617
: =5.926Tv 7.77047

1/ These computations were performed with 9 decimal places of which b appear in the table; therefore, some
of the computations may appear to be slightly in error.



Outline 2.~ Abbreviated forward and back solution

Computations

[ XN} '..a a
*11%12%13°*%10%1 01 %1, 042" %1 pm 12

8208230082022 #1282, r42¢* 82, nen232

8337 +#30%3,041°3,0+2° * %3, mv” 32

. . . . .
. '] L] . Ld
L] . L] . .

vel
a'n.nan.xsf-la'n.x!t-z' ¢ n.n-'-manii

Forward solution

H1%22% 3  Ma™, 21 %, b2 0% e D

1 512313"‘81::61 z:#lel n+2"'91 n-malz
%22%23°**"20%2,0+1% ,m+2* ** %2 .n+m “ox
1 23“'52n32 o+l 2 PLTILA n+m 2%
. e . . e
.« . . . e
.....0

%an n w1 n,o+2 n, m+m®nZ

5n n+lsn 2" IE!n n+mBnZ‘.

Back solution

Y. see Y' Y‘ Y'
1 1,0-2 1,n-i 1n

Y ees V! AL Y
21 2,0~2 2,r=-1 2n

Y _ees VO A Y
3 3yn=2 3,n-1 3n

V' eee Y ' '
ml m.n-zy m,n-lymn

Y eee YV Y '
prl £,n-2' £,n-1'ga

(3) (2) (1)

Instructions

Carry out a forward solution as indicated
in outline 1,

In general:

N5 s P15 Po2 g7 0 P k%1, 5
(5=k,eso2,n+1,. . ,0tm,2)
Check: @52 (J=k,.een, £+l,.certm)

kJ
aka= qk.,/ukk (J-’-lﬁ-l....n,n'*l.uoﬁ"m-z)

Check: Bkzszﬂkj+1 (J=k+l,..en,0+1,.,.0Fm)
Back solution
(1) vt =8 . (i=1,...m,%)
in n,n+i

. = [ ] i=
Check: Yy = Z¥! + 1 (i=1,...m)
(2) v =B X' B (i=1,.0em,2
i, n=1 n-l,pti in n-l,z ’ %)
Check: V! = ZYy! + X
¢ Z,n=1 i,n-1 1 (i=,...m)

3) v =| =Yt Y1
) i,n-2 Bn-2.::'l-i inen-z.n Yi.n—lan-z.n-l

(1=1,..4m,Z)

Check: Y! =Y + 1 (i=1,.,.m
Z,p=2  i,n=2 (1=1,.0.m)

In general:

t = Y1 -yt -
Yix™ Pre,oti™YinPin ™1, n-1Pic, n1 700
Yt =
i.]l"'lak,k"‘l (i 1....!!,2)

Check: ‘Y;:k = ZTY;k +1 (i=1.oolm)

Until:

Yt [
i1=91.n+1 inBIn 1.n-151 1 °°°

.";2512 (1=1.t.om.2)

Check: Y- ZY, *1 (171,..0m)
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If m = 1, this method can be used to solve the system of equations:

a)yX; + ek + . . . "'a']nxn:al,ml

81281 + ap¥y + . . . + 8oy = 82,41

Sy * ayXp + . . . +apX) = 8y el

The back solution provides the solution in the form:

'Yi'.J = x‘j (J=1, ... n)

This eliminates one step in the usual matrix solution of a system of simulta-
neous equations-- multiplication of the inverse of the matrix of the coeffi-
clents by the vector of the numbers to the right of the equality sign.

An efficient method for computing the inverse matrix without a back
solution and without the reduction of the unit matrix is given by Waugh (22).
This approach is not included in this handbook because it does not relate
directly to any specific step in the statistical fitting of systems of simul-
taneous equations.

A General Method

The abbreviated Doolittle method as we have deseribed it is applicable
only when A is symmetrical. But a slight modification of the method makes it
applicable to any matrix, whether symmetrical or not.

The method outlined below is commonly known as the Crout method (k).
Similar methods have been developed by Waugh and Dwyer (23). The methods of
Crout and Waugh and Dwyer require no more work than the usual Doolittle method.
It is unnecessary to learn two different methods--one for symmetrical matrices
and one for nonsymmetrical matrices. The statistician or statistical clerk who
becomes familiar with the method outlined in the following pages will be able
to solve any set of equations and invert any matrix.

In this handbook, however, this method is used only for nonsymmetrical
matrices. This was done chiefly because many statistical clerks and research
workers are familiar with the Doolittle method as applied to symmetrical matrices.
They will not have to learn a new approach for many of the operations we have
described.
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Solving Systems of Equations.--The system of equations: \

apXy + g + - - -+ 82dfn = 220 > (1)

apX1 + epXo + - .+ o+ apfXy = 80 )
where a; 3 # aj1 cannot be solved by the methods discussed up to this point.

If n = 2, the equations can be solved easlly by direct substitution. If
n = 3, the above equations can be efficiently solved by Cramer's Rule, which says
that:

80 %12 %13 %1 %10 %13
850 %22 %3 851 80 %23
a a a a
x, =| 30 "3 "3 x, =| 3L 30 33
A A
81 %12 %0 81y 812 213
321 8'22 a’20 where A = 9'21 a22 a.23
Xy - %31 %32 %30 831 832 833

The value of a third order determinant is given on p. 26. When n > 3, this
method is not efficient, since the evaluation of higher order determinants is

cumbersome. Therefore when n > 3, we use the Crout method to solve the system
of equations.

Outline 3 presents, in symbolic form, the Crout method for solving a system
of equations. An illustration of this method to solve the following equations
is given in table 18.

Ce - 2.5P, + 2.5P3 = 203.9
0.043%c, + P, = 138.1 (2)
Ce - 10.467P3 = -1866.79

These equations could be solved easily by Cramer's Rule or by the approach de-
scribed on p. 85; the Crout method is shown for illustrative purposes.
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Outline 3.- Crout method for solving a system of linear equations

Computations

Given the system of equations in n unknowns

anxl + 812X2 + ngYB P alnxn = "10
821X) + 8goKp + 833 + ...+ apKy = 8y

331)(1 + ﬂane + 833X3 + o0 + a3nxn = 330

a,1X) + ano¥o + en3x3 + .

Given mAtrix

-+ appkXp = a9

011 812 013 .o
821 822 823 -+ 8oy 830 833

&3] 832 833 -

© 81n 810 813
. ﬂ3n ..30 &32
%nl ®n2 n3 *** ®nn ®no Sn:

Auxiliary matrix

11 P12 B13 -+ Pin Y10 M1y (@)
b21|bog bpg ... bpy byg by (4)
b33|b3a[b33 +o. by, bag bay (6)
01 (Pn2|®n3 |- +|Pan Pno Paz (2n)

1) (3) (5)  (2n-1)
Solution

oo X
1 xn-axn-l n

* L, % X* x#
x1 xn-2 n-ln

(3) (2) 1)

Instructions
Given matrix
n
83= I agy (1=1,2,...n,0) That is, the sum across the
J=1 ith row.

Auxiliary matrix

(1) vy = & (1=1,...n)
(2) by = 313/’.1.1(3’2""“’0’2)

Check: by = Ibyy + 1 (J=2,...n,0)
(3) o = &p -Byybyp

Yo = &p by by (i=3,...n)

(4) By (830210 4 )/ 03 (3=3,...n,0,z)

Check: b,y = tb23+ 1 (3=3,...n,0)

(5) by3 = 833-by B3 -bybyg

b3 = &3Py B3-byobyy  (1=4,..00)

(6) b3J = (aBJ-b3lle-b3asz)/b33(4=h,...n,o,z)
Check: b, _ =Zb,, +1 (3=4,...n,0)

3z 33
In general:

Bk ek P P1iePh2P2k P33k * Pk, k-1 B-1, k

P18 P2 Pric P12k Py 3P3k P k-1 P,k (17k+Ls o)

By 5= (8501 Py Bipo 3 Be3Pag e e By 1By 3 Py
(J=k+1,...n,0,Z) Check: bkx=m’k,j+l (J=k+1,...n,0)

Until:

(20-1) Yy =8n D1 B1n-B2bon=+ + +~Bn, n-1%-1,n

(2n) by g=(8) 3By B yByoboy = +~By 1181, 3/ by (3=02)

Check: ’bnz=b +1

Solution
(1) %, = by X o=h Check: X2 = X, +1

- R * o = - *
(2) Y - bn-l,o bn-l,nxn 5-1 n-1, £ %a-10%

s X®*_ =X +1
Check xn_l -1

= -b -b X
(3) xn-‘z b11-2,0 n-2,nxn n-2,n-1 n-1
= -] b X* Check: X* =X _+1
x;-a b11-2,13 bn-a,nxn n-2,n-1 n-1 n-2 "n-2
In general:

Xy = OoPunXy Pk, n-1%n-17P,n-2%n-27" - Pk, ke 1 %kel
—vas o
X = by b XEDy o XE ) by o oXR ome P ke ¥Ea

Check: X =X +1

The final check is the substitution of the unknowns in
the original equation.
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Table 18.- Crout method for solving a system of equations 1/

.
.

Coefficient for - Constant . 5
. : term :
Cf : Pc H Pd .
Given matrix:
. -2.5000 2,5000 203 .9000 204.9000
1.0&89 1.5 0] 138.1000 139.1489
1. 0 -10.4670 -1866.7900 -1876.2570
Auxiliary matrix:
1.0000 -2.5000 2.5000 203.9000 204.9000 v
0489 1.1222 -.1089 114.1717 115.0628v
1.0000 2.5000 -12.6946 185.5991 186.5991v
Solution: Final check:
203.9000v
75.8762 134.3896 185.5991 :8%68.0999/
76 .8762v 135.3896v 186.5991v -1866.7899v

1/ These computations were performed with 9 decimal places, of which only 4

appear in the table; therefore same of the computations may appear slightly in
error.

Matrix Inversion.--The Crout method also can be used to invert nonsymmetri-
cel matrices. The computations involved in inverting a matrix of order n are
indicated in outline 4. The matrix to be inverted is given in rows (1) through
gn;‘, colums (1) through (n), and the unit matrix is written in rows (1) through

n), columns (n+l) through (n+n). The transpose of the inverse matrix is ob-

tained in the form of a back solution, with the last column, that is, ejn, com-
puted first.

The system of equations (1) can be written; in matrix notation, in the form:

Axl=al
where — - - - — -
a11 a2 . . . ain Xl ajo
®21 822 - - - 8p | X'= | Xp| anda'=|ap
A= .
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Outline 4.~ Crout method for matrix inversion

Computations

Given matrix

811812813°°°810%1, p+1%1 ,p+2°**%1 , 0012
851822823 ¢ +82085 14182 pd2°°*82 n+n®23

8318358330+ 089,%3 14123, n42° * *83, 040?32

.
3

aLnl&z:ZanB’ * 'annan, n-l'la'n.n+2 eee a'n.zrﬁ-na‘nz
Auxiliary matrix

by101207 30002100 14101, k2" o P2 nenP1m

essb, b b b

5102200300420 0s 11102 420 e #P2, nenP2s

b3 bpbg5ee ey b3 11103 mi2e e B3, 1038

bnl"’nzan’ . 'bnnbn,n+1bn.n+2‘ . 'bn.n-t—nbnz
Solution

€1 *** ®1,n=2 ®1,n-1 ®1n

® *** ®2,n-2 ®2,n-1 °2n

®31 *** ©3,n-2 °3,n-1 2n

[ ]
€pl *°° e11.11-2 en.n--l enn

e L e

n %,0-2 °Z,n-1 Zn

(3) (2) (1)

Instructions

Given matrix

[313] (i’J = lo XX n) is the
matrix to be inverted,

[ai-’:l (131’ vee nj J=n+l,...n"'n)

is the unit matrix,

n

a:« = 2 a.,; (1=1,...n, D+l

i2 ’ olly XXX
J=1 1 n+n)

that is, the sum across
the ith row.

Auxiliary matrix

The auxiliary matrix is computed
in the manner indicated in
outline 3,

Solution
(1) ein = bn.nq.i (i'_'lg see n.z)
Check: ey, = Zeg, + 1

(1=1’ eve n)

(2) ei,n-1= bn--l.n+i - einbn-l,n
(1=1, «se 0,E)
Check: °z,n-1=}:°l,n-l* 1
(121, «ee 1)
(3) e . p=2"Pn-2 ,n+1'°inbn-2 on

=83 ,0-1"n-2,0-1 (i=1,...,0,%)

Check: ez.n_-2=2ei'n_2+1 (1=1,..en)

In general: ;=0 .\ =8i D0y oy n1”o0 ™0k ke
(i=1,.44n,Z) Check: egp = ey +l (i=1,esen)



- 100 -

As shown on p. 82, a solution to the equations can be found by premultiplying
a' by A-1l.

In using a system of simultaneous equations for analytical purposes, the
matrix A usually consists of a set of constants, but a' veries frc? period to
period (see p. 82). In such cases, it is convenient to compute A™ and then
postaultiply it by the varying a' to get the X' values for each period. Equa-
tions (2) are solved by this method in table 19.

For this example,

1 -2.5 2.5 Ce 203.9
A=| .0489 1 0 X'=| P |and a'=| 138.1
1 o -10.467 Py -1866.79

Since the Crout method gives [A-1]', X' is obtained by a column-by-column
multiplication of [A-1]'by a', See p.10l for an explanation of this and p. 103
for the check on the computation.

If only one or two elements of A are subject to change, as with nonlinear
variables, a new auxiliary matrix need not be camputed. Only those terms of the
auxiliery matrix that are affected by the changing ajj values need be computed.
These terms can be determined fram outline 3 or L.

Table 19.- Crout method for solving a system of
equations using the inverse matrix 1/

. .

¢ . P . P . T . I I 13 1 2
Given matrix:
1.0000 -2.5000 2.5000 1 0 0 2.0000
.0489 1.0000 .0000 0 1 (o] 2.0489
1.0000 .0000 -10.4670 0 0 1 -8.4670
Auxiliary matrix:
1.0000 -2.5000 2.5000 1 0 o 2.0000 Y
.0489 1.1222 -.1089  -.0435 .8910 (03 1.738 v
1.0000 2.5000 -12.6946 .0701 1754 -.0787 1.1668 v
Transpose of the inverse matrix: Sc;lu'bion'
2 L]
0.7347 -0.0359  0.0701  0.7689 203. .8762
1.8367 .9101 1758 2.9224 13%.? ' 172.27896
L1754 -.0085 -.0787 .0881 -1866.79 1%5 .5991
3.7469v 1.8656v  1.1668v s' 395.8650v

1/ These computations were performed with 9 decimal places , of which only 4

appear in the table;
erzor. le; therefore some of the computations may appear slightly in
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Evaluation of Determinants.--The Crout method also can be used to evaluate
nonsymmetrical determinants. Referring to outline 3, the value of the determi-
nant | ajj| (i,3=1, ... n) 1is given by bjy bpp b33 . . . byy .

Additional Comments on Matrix Multiplication

Alternative Forms.--Matrix multiplication is defined on p.2k in terms of
a row-by-column operation; that is, ej J» the ij th element of the matrix product
E = AB, equals the sum of the products of the elements in the ith row of A with ’
the elements in the jth column of B, starting at the left and the top respectively.

Matrix multiplication also can be defined as a row-by-row operation, that
is, eij, the ij th element in the matrix product, E = AB, equals the sum of the
products of the elements in the ith row of A with the elements in the jth row
of B' (the transpose of B). Or it can be defined as a column-by-column ope—rE-
tion where ejj, the ijth element in the matrix product, E = AB, equals the sum
of the products of the elements of the ith column of A' with the elements in the
Jth column of B. If A and B are symmetrical, the matrix product AB can be ob-
tained by either (1) a row-by-column, (2) a row-by-row, or (3) a column-by-column
multiplication of A with B.

Row-by-row or column-by-column multiplications are useful concepts, espe-
cially when either B' or A' has been computed and the matrix product AB is
needed. It saves copying data and its attendent mistakes. Referring back to
the limited information computations, in section (7) *P' ie obtained by a
column-by-column multiplication of (My*z*)' = Mz¥*y* with P' (see p. 37). In
section (26), U = P'Fpc is obtained by a row-by-row multiplication of 01P' with
F . (see p.47). bW could have been computed in section (16) by a column-by-column

tiplication of b' with W (see p.44). As a means of separating the camputation
of the coefficients and their standard errors, a row-by-column multiplication
of b with W is shown instead in tables 9 and 10.

Checks.--In the explanation of the limited information computations, checks
on the computation of the matrix product AB are introduced for certain specified
forms of A end B. These include: (1) Augmenting B with a £ column, composed
of row sums. After the multiplication is carried out on the augmented B matrix,
the ith element of the resulting % column of AB is checked against the sum across
the ith row of AB. See, for example, the computation of Mz, x times Myuyx = P’
in table 10. (2) Augmenting A with a row, composed of column sums. After the
multiplication is carried out on the augmented A matrix, the jth element of the
resulting Z' row of AB is checked against the sum down the jth column of AB.

See for example, the computation of -P' times b ' = c¢' in table 10. (3) A re-
camputation where the product is a scalar. See, for example, the camputation of
-P' times b ' = ¢' in table 9.

The same general procedure, that is, the use of a £ column or a Z' row,
can be extended so that a check is available for the computation of any matrix
product obtained by any method of matrix multiplication. These results are
sumarized in outline 5.

This outline is divided into three sections: Computations that relate to
(a) row-by-column multiplication; (b) row-by-row multiplication; and (¢) column-

by-column multiplication. Under each of these methods are listed all possible



Outline 5.- Computational forms for checking matriz multiplications

- 102 -

Row-by-column multiplication

Type of multiplication

Computational form

&
Matrix x matrix = matrix or [ ] X [ ] = [ ]:
L] = [ ] - gl ]
Column x row = matrix [ ] X c 3 z = [ ]t
or
s [ ] X £ 3 = 8'[ ]
Z
Row x matrix =  rov 3 X [ ]2 = C 3
b
Scalar x row = row 1 X C Jz = L1
Matrix x column = colum gt[ ] X [ ] = 2.[]
Column x scalar = column 2t [ ] X ca = 2![]
Row x column = gcalar Scalar product-recompute
Scalar x scalar = scalar Do.
Row-by-row multiplication
Ma:m x matrix = matrix 4 or [ ] X ):J: ] = ( f
L1 T[] - ]
z
Colum x column =  matrix or [ ] X 8'[] = [ J
5 [ ] X (] = z'[ ]
Row x matrix = row [ 1 x 2,[ ] = C jz
Scalar x columm = row €3 X 2'[] = t * T
Matrix x row =  colum E'[ ] x t 13 = ):'[]
Column x scalar = column P [] X o ] = 2:'[]
Row x row = scalar Scalar product-recompute
Scalar x scaler = scalar Do,
Column-by-colum multiplication
Matrix x matrix = matrix or [ ] X [ ] = [ ]
T
L) =« [1 - ]
Row x row = matrix or [ X cC 3 z = [ ]z
z
£ 3 x C 12 - L1
Column x matrix = row [] X [ ] T = [ :lz
Scalar x row =  row [wn] X C 21 z = C Jz
- b4
Matrix x column column [ J X [] = 2'[]
Row x scalar = cclum r 3% x £ = 2'[] -
Column x column = soalar Scalar product-recompute
Scalar x scalar = scalar

Do,
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types of multiplication. The word "column" refers to a column vector and the
word "row," to a row vector. Next to each of these is the computational form
that should be used to check the operation. The symbol[ ]denotes a matrix;

[] a column vector;[ Ja row vector; []a scalar; I a colum of row sums;
and Z' a row of column sums.

As an illustration of the use of outline 5, consider the following: a
column-by-column multiplication of a matrix times a column vector. (This
method was used on p. 71.) Outline 5 indicates that we augment the matrix
with a Z column. After the column-by-column multiplication is carried out
(as explained on p. 101), the resulting column vector has an additional row,

Z', That the sum of the elements of the column vector is equal to the
element in the 2' row is indicated by a check mark. This checks the com-
putation.

For several types of matrix multiplication, alternate computational
forms are indicated in outline 5. The preferable form to use is determined
by: (a) The form of the matrices used to compute the product, that is,
whether a £ column or Z' row has already been computed; or (b) further com-
putations, if any, into which the product enters, that is whether a 2
column of Z' row is desired.
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GLOSSARY 27/
Adjoint of a matrix.--In this handbook this is used as a computational device

for inverting a (2x2) matrix (see p. 40 ). For a general definition, see
Klein (13, pp. 335-337) or other references on matrices.

Adjusted moments.--Moments that have been adjusted in such a way as to make
the augmented sums of squares for each variable nearly equal to 1.

Adjustment factors.--Factors used to obtain the adjusted moments from the
augmented moments (see p. 6 ).

Augmented matrix.--Two or more matrices or vectors written adjacently to
facilitate computational operations. The reader is cautioned not to confuse
this with an augmented moment matrix.

A nted moment matrix.--A matrix consisting of adjusted augmented moments
see P. T ).

Augmented moments.--Moments are sums of squares and cross-products from which
a correction factor has been deducted to give results that would have been
obtained had the calculations been based on variables expressed as deviations
from their respective means. Augmented moments are moments that have been
multiplied by the number of observations included in the analysis. They are
used to avoid rounding errors.

Coefficlent of determination.--The square of a correlation coefficient.

Column-by-column matrix multiplication.--A variant of the more common row-
by-column computation (see p. 101).

Column vector.--A matrix consisting of m rows and one column (see p. 22 ).

Consistent estimates.--Estimates of statistical coefficients obtained in
such a way that the average value for many large samples equals the value
that would be obtained from a similar calculation based on the combined

evidence of all possible samples. For unbiased estimates s the same property
holds when estimates are made from samples of any size.

277 Definitions given here refer only to terms included in this handbook.
In cases where an exact definition would require a large amount of space, a
condensed explanation is given instead, possibly with a cross-reference to
another publication. The reader is presumed to be acquainted with terms

covered in a first course in statistics that includes multi
correlation and regression. ple and partial
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Covariance.--The joint sampling variation between two or more statistical
coefficients. It is analogous to the variance of g single coefficient,

Cramer's rule.--A computational scheme for solving systems of equations,
In this handbook, its use is recommended only for nonsymmetrical systems
consisting of exactly 3 equations (see p. 96).

Critical values.--Points in a probability distribution that delineate a
given percentage of the items. Points of 5 percent or 1 percent are
commonly used in statistical tests.

Crout method.--A computational scheme for solving systems of equations R
inverting matrices, and performing similar operations. In this handbook,
it 1s used only when the matrix to be inverted is nonsymmetrical; but it
can be used for any matrix (see p. 95).

Dead justed data.--The original data on which the analysis was based, as
contrasted with the adjusted moments used for computational purposes.

Degree of identification.--See identification.

Determinant.--A numerical value associated with a square matrix (see p. 26).

Diagonal of a matrix.--See main diagonal of a matrix.

Doolittle method.--A computational scheme for solving systems of equations,
inverting matrices, and performing similar operations. As commonly used,

it ineludes a forwerd and a back solution; in this handbook, in most
instances only the forward part of the solution is used. As described in
this handbook, the method can be applied only when the matrix to be inverted
is symmetrical (see p. 89).

Efficient estimates.--Estimates of statistical coefficients obtained in such
a way that their average standard error for many large samples is as small as
possible. For "best" estimates, the same property holds when estimates are
made from samples of any size.

Endogenous variables.--A set of variables that are assumed to be determined
simultaneously by common economic forces. Lagged values of endogenous
variables are included among predetermined variables in an analysis.

Exogenous varisbles.--A set of variables that are unaffected by the common
economic forces that are assumed to affect endogenous varisbles in a system
of equations.

Floating decimal point.--The carrying of a fixed number of significant figures
in clerical computations, and therefore a varying number of decimal places, as
contrasted with the method, suggested in this handbook, of carrying a fixed
number of decimal places.
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Full information amroach.--A maximum likelihood method for deriving estimates
of the structural coefficients for each equation in a system of equations.
Estimates of all coefficients in all equations in the system are obtained
simultaneously. In general, the computations involved are formidable so the

method is seldom used.

Tdentification.--A mathematical property of an equation that indicates whether
The structural coefficients can be estimated by statistical means. Degree of
jdentification refers to whether the equation is underidentified, just
identified, or overidentified.

Identity matrix.--A square matrix in which all elements on the main diagonal
are 1, and all nondiagonal elements are zero (see p. 22).

Instrumental variable approach.--One of several methods for obtaining
estimates of the structural coefficients that are statistically consistent in
a single equation that contains more than one endogenous variable. A set of
predetermined variables from the entire system is chosen such that one
variable is available for each coefficient to be estimated. These are called
instrumental variables. They are used in the manner described by Klein

(}_3_, pp. 122-125). The objection to this approach is that different answers
are obtained depending on the particular set of instrumental variables used.

Inverse of a matrix.--The inverse of the matrix A is written as A1, The
inverse of A is that matrix which vhen multiplied by A equals the identity
matrix. If the original matrix is symmetrical, the inverse also is symmetri-
cal (see p. 26).

Iterative method.--A computational device or formula in which an initial value
is assumed or estimated and successive values are derived from the formula.
Such methods are used only when the successive values are kmown to converge to
the value that would be obtained by a direct computation.

Just identified equation.--An equation that has the mathematical property that
permits a unique determination of its structural coefficients from regression
coefficients in reduced form equations (see p.83 ). Such equations can be

fitted by the method of reduced forms or by a modification of the limited
information approach.

Limited information approach.--A maximm likelihood method for deriving
estimates of the structural coefficients for equations that are overidentified.
The coefficients usually are estimated for one equation at a time , with the
simultaneity implied by the system taken into account in the computations , but
information on the particular variables that appear in each of the other
equations in the system is ignored. The estimates are statistically consistent
and as efficient as any others based on the same amount of information. A

slight modification of this approach is used for t
identified. equations that are just

Main diagonal of a matrix.--The elements, listed in order, al
of a square matrix starting with 814 a.nd,ending with a ., ong the diagonal
nn
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Matrix.--An array of numbers arranged in rows and columns (see p. 21 An
(m x n) matrix consists of m rows and n columns. )

Maximum likelihood.--A commonly used mathematical procedure for obtaining
formulas to estimate statistical coefficients. Coefficients are derived in
such a way as to maximize a likelihood function. The results are known to be
statistically consistent and efficient. Statistical coefficients obteined from
such formulas are called maximum likelihood estimates.

Model.--A system of related structural equations, together with some implied
Joint or combined probability distribution for their error terms.

Moment matrix.--As used in this handbook, this always means an augmented moment
matrix.

Moments.--See augmented moments.

Monte Carlo approach.--A method used to indicate empirically the amount and
kind of sampling variation that can be expected under given conditions.

Samples are drawn from a known population, estimates based on these samples are
made, and the results analyzed.

Order of a matrix or determinant.--The number of rows or columns in a square
matrix or in a determinant.

Overidentified equation.--An equation that has the mathematical property that
alternative estimates of its structural coefficients can be obtained from the
regression coefficients in the reduced form equations (see p. 83). Hence the
method of reduced forms cannot be used to estimate the coefficients; instead
the limited information approach commonly is used.

Partially-reduced form equation.--In some equation systems data are unavailable
for certain endogenous variables in the structural equations. In such cases,
variables with which this variable is assumed to be related are substituted
algebraically for it in other equations. The resulting equations are called
"partially-reduced form equations" (see p.Th).

Predetermined variables.--A set of variables that are assumed to affect
endogenous variables in a system of equations but not to be directly affected
by them. They may include exogenous variables and lagged values of endogenous
variables.

Rank of a matrix.--A matrix has rank r if the largest nonzero determinant
included in the matrix is of order r.

Recursive approach.--Some systems of equations are formed such that at least
one of them contains only a single endogenous variable., Consistent estimates
of coefficients in such equations can be obtained by solving them directly by
least squares. If other equations contain only one endogenous varisble other
than those contained in the first set of equations, consistent estimates of
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the coefficients in these equations can be obtained if they are solved directly
by least squares, provided calculated values of the other endogenous variables
are substituted for actual values before making computations. Systems of
equations in which each equation can be fitted by least squares by the succes-
sive substitution of calculated velues of endogenous variables are known as
recursive systems, and this method of solving them is called the recursive
approach. Although the estimates of the structural coefficients are statisti-
cally consistent, frequently they have larger standard errors than if estimated
directly as in the limited information approach.

Reduced form equations.--Equations that result when each endogenous variable
in a system of equations is written as a linear function of all of the pre-
determined variables in the system. In this handbook, they are used as a
computational device when using the system of equations for analytical purposes

(see p. 83).

Reduced form method.--A method that ylelds estimates of structural coefficients
that are statistically consistent and efficient for equations that are just
identified. Reduced form equations are solved by least squares and the struc-
tural coefficients obtained by an algebraic transformation. Results obtained
are identical with those given by the modification of the limited information
method described in this handbook.

Row-by-row matrix multiplication.--A variant of the more common row-by-column
computation (see p. 101).

Row vector.--A matrix consisting of one row and n columns (see p. 22).

Scalar.--An ordinary number, as contrasted with a matrix or a vector. It can
be thought of as & matrix with one row and one column.

§imultaneous correlation coefficient.--A coefficient that indicates the
Percentage of variation in the joint distribution of endogenous variables in a

?ystem o§6§quations explained by all predetermined variables in the system
see p. .

Square matrix.--A matrix having the same number of rows and columns.

St;uctural equations.--Equations derived from the basic economic relationships
that are assumed to prevail within a system of equations, as contrasted with

other equations, such as reduced form equations, that are used chief s
computational device. ’ 1y es

Symmetrical matrix.--A square matrix in which all the corresponding elements
above the mgin diagonal are equal to elements below the dlagonal; that is,
83§ = a.ji(see p. 22).
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Transpose of a matrix.--The transpose of the matrix A is written as A'. The
transpose of A is a matrix in which rows of A are columms of A', and columns

of A are rows of A'. The transpose of a symmetrical matrix equals the matrix
itself (see p. 22).

Two-tailed test.--A statistical test involving both tails of a probability
distribution. Critical values for a 2-tailed test at a 5-percent probability

level are found such that 2% percent of the items lie to the left and right
of these points respectively in each tail.

Underidentified equation.--An equation that has the mathematical property that

its)structural coefficients cannot be estimated by statistical means (see P.
29 ).

Unit matrix.--See identity matrix.
Variance.--The square of a standard error.

Vector.--A matrix consisting of only one row or one column. By convention, the
term vector alone implies a row vector consisting of one row. A column vector

consisting of one column is written as the transpose of a (row) vector
(see p. 22).



